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ABSTRACT-V,-

The immediate attention of the control systems engineer '

is directed to the dynamic behavior of the system under

study. It is important to study the effects on overall

system performanceof-varying one or more parameters (mass,

inertia, gain, resistance, etc.). It is equally important

to determine whether a desired dynamic behavior can be

achieved with any set of values for the parameters--if not,

redesign is indicated.

In this thesis , control systems analysis package is

developed using parameter plane methods. It is an inter-

active, user-friendly computer aid. Given a characteristic

equation containing two variable parameters, the output of .-

the analysis may be either tabular or graphical, with plots

of any of the following types:

1) Constant damping curves as a function of frequency,

22 Constant frequency curves as a function of damping,

3.. Constant sigma lines (real root lines), .',

42 Constant zeta-omega (damping-frequency) curves.
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I INTRODUCTION

The analysis and synthesis of linear feedback control ,

systems, or the compensation of same, can be realized by P.

three general methods. The first of these can be called the

integral method. Given a control system, described by a set

of differential equations, one selects a cost function to be I

minimized with respect to certain variable system parameters.

The major drawback with this method is the difficulty of

varying more than one parameter at a time. The second p.

method is the Bode frequency response technique whereby the

system's open loop transfer function is manipulated to obtain

the desired system response. This method also has its "

inherent weaknesses: difficulty of application to non-unity

feedback control systems, difficulty in interpreting the

closed loop transient response in terms of the open loop

frequency response, and difficulty of varying more than one

parameter. Third are the algebraic methods. Within this

category can be included the familiar root locus method.

Here, a graphical technique is provided by which the set of

all points which could potentially be made roots are plotted

in the S-plane. The root locus method is a valuable and

powerful tool when only one parameter is varied; results

are less satisfactory for two parameters and of little use

when three or more parameters are involved.

5



P.

Methods for studying the parameter-root relationship

when two or more parameters are variable are clearly of

considerable value. For a linear system, the set of

differential equations that describe that system can be

transformed into algebraic equations and manipulated to

provide a characteristic polynomial. Since the coefficientsJ.,

of the characteristic polynomial are deterimined by the

system parameters, it follows that some relationship exists ..

between the value of any parameter and the value of the

characteristic roots. In reference (1), Mitrovic developed

an algebraic/graphical method for obtaining the roots of a

polynomial in terms of two variable parameters. In

references (2), (3), and (4), Choe, Hyon, and Nutting,

respectively developed and extended the Mitrovic method to

the compensation of linear continuous feedback control

systems. The disadvantage of the Mitrovic method is that the

variable parameters may appear in no more than two coeffi-

cients of the characteristic equation, which limits the

flexibility of the technique. In reference (5), Siljak

introduced a method for obtaining the roots of a polynomial

in terms of two variable parameters that may appear in any

and all of the coefficients of the polynomial. LaterThaler

and Towill [Ref. 6] extended this method to the compensation

of linear continuous feedback control systems. It is from

the latter work that the ensuing parameter plane equations

6°- .'
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were developed. General methods of compensation will be

presented, and an attempt will be made to relate the root

locus and the parameter plane methods as a set of comple-

mentary techniques which, when applied in tandem, represent

the most satisfactory tool to date for designing linear

feedback control systems.

The parameter plane method, which works well for two

variable parameters and which may be extended to three or

more parameters, is purely algebraic, and the resulting plots

are valuable aids to analysis. The term parameter plane ..-

comes from the plot for two parameters--in a rectangular

coordinate space one parameter will define the abscissa while

the second parameter defines the ordinate (the S-plane is * -

inconvenient for presenting the desired results). Three

parameters define a 3-dimensional parameter space, etc. For

design problems it is convenient to think of the algebraic

calculations as a mapping procedure. By choosing a point on

the S-plane, the characteristic polynomial acts as a mapping

function whereby the point may be "mapped" onto the alpha- '

beta plane (alpha and beta are the two variable parameters

to be used throughout the remainder of this text). The

relationship between being able to place the roots of a

polynomial at specific locations in the S-plane and the

compensation of linear feedback control systems is as

follows. A feedback control system, including any added .o..
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compensators which may contain variables, can be reduced to a

ratio of two polynomials (the closed loop transfer function).

A specified system response in terms of overshoot, bandwidth,

settling time, steady-state accuracy, etc., can theoretically

be obtained by placing a pair of complex conjugate roots of

the characteristic equation at a specific location in the S-

plane, while ensuring that the real part of this complex root

pair (the dominant roots) is smaller in magnitude than the

real parts of the remaining roots of the characteristic

equation. The problem of compensation, thus of feedback

control system design, reduces to one of placing the dominant

roots of the characteristic equation at the desired location.

The ability of the parameter plane method to achieve this

goal will become obvious. -

8 4"
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II. DERIVATION OF PARAMETER PLANE EQUATIONS

A linear feedback control system's characteristic equation :4
can be expressed as a polynomial of the following form:

m k
f(s) = a = 0, where (2-1)

k=O k

ak (k=O,l,...,m) are real coefficients

S= - . - C.+ jW ,.....

is the undamped natural frequency and

s is the relative damping coefficient

kIn reference (5) it is noted that S may be represented by

the following:

S= wk(T(-)+ j  1-2 Uk (-)) (2-2)

where

k k+l
T(~)() Tk) and Uk()l Uk()

T (4) and Uk(4 ) are Chebishev functions of the first and

k k

second kind respectively. Values of zeta and omega will be

considered such that 0<z<l and O<w<a. Values of Tk and Ukk k

are tabulated in various appendixes. More important to digital

computer analysis, they can be obtained from the following

recursive relations:

9

6-



-.:- ..

T ( ) - 2T k ( ) + T l( ) = 0
k+l 1 Kk-i

(2-3)

Ukl)- 2 Uk(.l + Ukl() = 0
1%k+lk -

Here, T0 ( )=I, T1 ()=E, U0 ( )=O, U 1 ()=I. Substituting

equation (2-2) into (2-1) and setting the real and imaginary

parts to zero independently, one obtains:

m k
M akw Tk(-0>=0__

k k

k=-

(2-4)

m k k
k=O

Employing equations (2-3), one obtains from equation (2-4): " -:

m k k =

Z (-1) ak W Uk() 0
k=0 k-...

(2-5em
(ac)k a k=kb c = c 

(

k k~k

k=O.

Now consider the coefficients a of the characteristic

equation (2-1) as linear functions of the variable system '.--

parameters, a and ,as follows: ,

ak  b bk + Ck + dk  (2-6) "N 1
k k k. k

10- •



tsing this relation for ak equations (2-5) become:

c.B + $C + D =0 -'.

(2-7)

o,13 + C + D =002 2 2

where

m k k mn k k
B 7 (-1) bkw Uk- B 2 S (-1) bc U D

1=k=0 k -i2 k=0

m k k m k k
C1  z (-1) cL W U C9 = (1 cW U

k=0 k ki2 k=0

(2-8)

mk k m _ k ku
D = (-1) dW Uk- D 2 Z (-) d1~

k=0 - k=0

*Since equations (2-7) are linear in the two unknowns alpha and

* beta, Cramer's rule may be applied to obtain:

C D9-C 2D 1B 2D 1-B 1D.

- C BBC -B C (2-9)

1 2 21 12 2 1
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Equations(2-9) are now functions of zeta and omega. Hence,

by fixing either zeta or omega and varying the remaining

parameter, the constant omega or constant zeta S-plane

contours respectively can be mapped into the real domain

of the alpha-beta or parameter plane.

In reference (5) the following relationships are noted:
,S..?

s = Pk + j (A ) 
I - 2  Qk

P + 2wP + LOP =0
k+1 k k-l

2Q +2Q+WQ 0(2-10)
k,."+ 2wPk + 2 0k-l ="0

P k _Q k0 P1 Q k Q =

0 Q0 0.,Q

Pand Qare related to the Chebishev functions by:

k k

k w2 Tk(_4) (-1)w T'k(k)

(2-11)

= k-l = -)k+l k-l

'. k = - Q k k k Ii?..

12
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By employing equations (2-10) and (2-11), one obtains

(proceeding as before);

- .

SakQk-1 0 Z a kQ = 0 (2-12)

k=0 k= 0 L"F

Combining equations (2-6) and (2-12) with Cramer's rule, one

again arrives at equations (2-9) where the following expressions

now apply:

m m

B 1 = bk Qk-l= 2 k kk=O k=O :.:;

• .,. .-

m m
C1 = c = 0 C = Q 0 (2-13)

k=O kk-l 2 k=O k

m m
D = Z dk Qk-l= 0 D2  1" dk Qk= 0

k=0 k=0

Equations (2-9) and (2-13) are useful for mapping constant

zeta-omega curves from the S-plane into the parameter plane.

As will be demonstrated later, these curves play an important

role in dominance considerations.

If the complex variable S is substituted in equation (2-1)

by letting S =-a, where sigma corresponds to values of S along "-.'-

13
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the real axis, then according to equation (2-6) the

characteristic equation (2-1) becomes:

m ..
bk k m k k m k k

Z (-) ba + 3 Z (-1) cka + Z (-1) d = 0
k=O k=O k=O

(2-14)

The above expression represents a straight line in the alpha-

beta plane for a given value of sigma. Hence a point on the

real axis in the S-plane maps into a straight line in the

alpha-beta plane. In addition, for given values of alpha,

beta, and sigma which satisfy equation (2-14), the

characteristic equation (2-1) must have a real root at minus

sigma. On the constant zeta and omega curves previously

defined, for certain values of alpha and beta (say, for

values obtained from equations (2-9) for given values of

zeta and omega) the characteristic equation will have a pair .v,

of complex conjugate roots at S -4u) + j 2
The significance of the above discussion is that by

applying equations (2-9) and (2-14) one can, for a specified

value of zeta, omega, and sigma, compute the value of alpha

and beta such that the characteristic equation will have a

pair of roots at S = - 1 Wl + jW 1-g' The m-2

remaining roots of the characteristic equation can then be

calculated by dividing out the two known or specified
.0%,

roots. This method, where zeta, omega and sigma, or simply

14

.--.. )
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zeta and omega are specified, and where the computations for

alpha and beta are done algebraically, will be referred to as

the algebraic parameter plane solution.

To solve the problem in general for all values of zeta,

omega, and sigma, it becomes necessary to plot a family of

parameter plane curves for various values of zeta, omega,

sigma, and if desired, zeta-omega. On the resulting

parameter plane plot one can, by choosing an operating point, ~

* graphically read from the curves the values of alpha and beta

and, hence, the values of the rr roots of the corresponding

* mt order characteristic equation. This latter method will

-be referred to as the graphical parameter plane solution.

The algebraic solution has the advantage that the labor

of plotting the curves can be avoided, but the disadvantage

remains that without the curves it is dif ficult to pick the

* optimum values of zeta and omega so as to ensure dominance

while still meeting the system specifications. The graphical. .

solution has the advantage that one has a "picture" of the

* way the characteristic roots move about in the S-plane as

* alpha and beta are varied. This enables one to choose the

*values of alpha and beta corresponding to the best values of

* zeta, omega, sigma, and zeta-omega for all roots of the

characteristic equation. This feature of the parameter

*plane points out a strong justification for attempting to

obtain the parameter plane curves. And with the employment.

15



of a digital computer and an appropriate algorithm to realize

the parameter plane curves, the advantage of the algebraic
i- . 4

method becomes muted.

Recursion methods (equation (2-3)) are by no means theC "

only methods of producing algebraic and graphical parameter

plane data. Thaler and Karmarkar [Ref. 7] describe a matrix

solution to the parameter plane problem. Essentially, a

matrix of coefficients may be manipulated to obtain the

following general form:

4 2

b1  c1  -a 0 0 0 dI

2 . I

2
2 2-2w -W 0 m0 2 e2  B

2 in-9

1 -2kw -2w 0 0R
m-2

* . -l -2tw 0 =
4=0

- d_ 2  Rm-2

2

-2Ew d 1 -. . 1
4M-

b c 0 0 0 -I dm-2 , e 0."in m m .

''%

16
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where bk, Ck, dk, , and tw are as described before, and:

ek (k=l, ... , m) are the coefficients associated with the
non-linear alpha-beta product terms

R is the sum of the m-2 roots of the polynomial character-
istic equation taken one at a time

Rm-2 is the sum of the m-2 roots taken m-2 at a time

Further, by the application of appropriate row operations,

this matrix may be reduced to the following row-echelon form:

---

0 0 0 k 1 1  k1 2

0 1 0 . 0 k k 6 -

21 22

m-2
0 0 1 . 0 k31  k3 2  R

( 2-15)...

;.:.I

kml km2"....,

17,. . .

Adm 4



- ",: .,

For the case when all coefficients of the characteristic

equation are linear, i.e. ek(k=l,...,m) = 0, then Kk2

(k=l ,...,m) = 0, and

B = -K9II

6 = - 21.["".

as obtained from the first two rows of the matrix equation.

One should note that in arriving at equations (2-15),

2approximately m row operations are required for the row-

echelon matrix formulation for each point of the parameter

plane curves (e.g., each time either zeta or sigma are

varied). Compare this with the approximate m calculations

required to obtain the recursion equations of the previous

chapter, and the matrix method becomes relatively inefficient

for larger order systems.

One should not, however, discard the matrix approach

entirely. For small order characteristic equations, this

technique compares favorably with the recursion method.

And when the variable parameters are non-linear--when one

must deal with alpha-beta product terms--the matrix approach

affords a more direct method of obtaining the alpha-beta

pairs. Whe ther the recursion or matrix method is utilized

1 From equations (2-15), one obtains the two quadratic forms

K K2 K K2-1)a+K =0
22 2 K2 1 12 11. 22 11

K12 21 +(K 1 K 2 -K 1 1 K2 2 +I)1+K 2 1 =0

from which alpha and beta are easily derived.

18
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should depend on the inclusion of alpha-beta product terms;

ultimately, it is a matter of personal preference.

It
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III. APPLICATION OF THE PARAMETER PLANE METHOD

A. ALGEBRAIC SOLUTION

In this section it will be assumed that the system

performance specifications can be met by placing a pair of

complex conjugate roots at a specific location (i.e., by

choosing appropriate values for zeta and omega). If after

computation of the necessary values of alpha and beta to

locate the roots as desired it is found that these specified

roots are not dominant, then either a different value of zeta

and/or omega must be used (possibly at the sacrifice of some

performance measure), or a different method of compensation

will have to be attempted. In a later section a method will

be addressed whereby the dominancy requirement may be

achieved.

1. Feedback Compensation

For a unity feedback control system, let

K K
G e(S) sm+e ism-1 + .+eLSL (3-1)

where K is the forward path gain (a variable) and e(S) is a

polynomial in S representing the poles of the open loop V

transfer function of the uncompensated system. In equation

20
P..
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(3-1), L corresponds to the system type--for a type 0

system, L=0, for type 1, L=1, etc. The system's error

coefficient is defined as:

... ,..

K = lir S LGcc (3-2)
S-40  Vc

where G is the open loop transfer function of the
cc

compensated system.

a. Tachometer Plus Acceleration Feedback

In order to achieve the system performance

specifications, a feedback compensator must be introduced.

Let

H KtS + KSt a

The resulting compensated system's characteristic equation

becomes:

e(S) + K(KItS+KaS 2 ) - 0 (3-3)

and by expanding e(S), equation (3-3) becomes:

sm+em 1Sm- . .+e 0+(-4)2

e+.+(e2+KKa)S +(e +KK )S+e +K 0 (3-4)
m-1l a 1 t o

where L is zero for a type 0 system (the most general case).

The following result3 also apply to a type 1 system if e is° 0

set to zero, and, similarly, for a type 2 system if both

e and eI are set to zero, etc. Combining equations (3-2),
0

(3-3), and (3-4) the error coefficient becomes:

21
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K = lim sK e K (3-5)
% -C'mS-0 e(S)+K(K eoK .S 0

W.

or for a type I uncompensated system:

K = K (3-6)
e e +KK

1 t

or for a type 2 uncompensated system:

K

K = K(3-7)
e KK

t

Note that if the uncompensated system is type 2, the

compensated system would be type 1 if tachometer feedback

or tachometer plus acceleration feedback is used.

In the compensated system's characteristic

equation (3-4) let alpha KK and beta = KK t  Equationat

(3-4) then becomes:

sm + e Sm-1 +. .+(e2+1)S
2 +(e +B)S+e +K =0

Recalling equation (2-6) where in general the coefficients ",

f the characteristic equation are of the form:

ak b c+C B+d ,-k k k k 2.

and letting m=k, then from equations (2-8) one obtains:

22
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B -)i2U 2 B 2_2 2

1 1 2'2

D = m k k

B1 = (I) 2U = (212)d2U

E ,=k d' k =k- i D 2 E ( 3 - . -

k=O k=0

since U =0 and U =1. From equations (2-9) one derives:
0

m k

CD-CD (-1) d kUk- mS= 12-2C1 k kk - k0( k k-2
B C- BC 3 k- (k)dl
1 12 2 1 k=0 -

(3-9 ) ' ::. ,
k k-i

B = Z (-1) d (Uk-U2Uk_)
k= 0 k 2'P

If alpha and beta are linear functions of K, the forward

path gain, one can use the steady-state error specification

to define K in terms of alpha and/or beta. Since zeta and

omega were assumed to be specified, then from equations

(3-9) one may solve for alpha and beta. From this, K and

K are readily determined.
t

Example 3-1

The system of Figure (3-1) is to be compensated by using

tachometer plus acceleration feedback. The system

specifications are as follows:
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Figure 3-1

1P 1. Complex roots corresponding to &=0.7 and -10.

2. K >6

From equation (3-2):

K
K e 2+KKt > 6-

*From which K)12+6KK The compensated characteristict*

equation is

3 2
S +S (3KK )+S(2+KK )+K S0 (3-10)

a t

24o"

Fi ur 3 1.'.-

J, ,V

1.Cmlxroscrepnig o.07ad 1 ,.-,.
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Letin alha KKand beta -KK equation (3-10) becomes:

S S(=)+(+3+ 0 (3-10a)

* From equations (3-8):

B =100 2 4

C -0 2
1, C =-l10

D -1100-K 1,=-12

and from equations (3-9):

10 l(-1100-K) =140(-1100-K)+56000 (-1

From the steady-state accuracy specifications, then, it is

necessary that K>12+603; let K=12+613. From equations (3-11)

it is found that $=623, hence K=3750. Therefore, aI=48.5,

and since ae=KK and j3=KK:

a t

K 48.5

a 3750 002

K=623 _

t 3750 -016

'A 25



The compensated system's characteristic equation becomes

3 2
S +51.5S +625S+3750=0 (3-12)

Now zeta=0.7 and w=10 corresponds to S +14S+100=0.

Dividing equation (3-12) by this quadratic, the remainder

is S+37.5. Since zeta'omega of the desired roots = 7<<37.5,

the complex roots are dominant and the problem is solved.
, ..- %° •.**

b. Tachometer Feedback Only

Let H = K tS. The characteristic equation of the

compensated system becomes: % ,

Sm+e m m-l +... +e 2S2+( I +a )S+e 0 "==

Proceeding as in the previous example, one obtains:

B =0 B = -.
1 2

C = -1 C =0
2

m k k m _k k
D1 = (-l)kdk QjUk-I D = E (-)kdk Uk

k=O k k-i-k=0-k k

. f -...

26
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and

m& m

=L md co~i U (1dw U(-1) rn k k

kO k=O k-

(3-13)

For a specified value of zeta and omega, alpha and beta can ,

be obtained from equations (3-13). The error coefficient is

then determined directly from equations (3-5), (3-6), or

(3-7). Thus the error coefficient is fixed for a given

value of'zeta and omega, and if this parameter is to be met, I

the values of Zeta and omega may require adjustment. One

possible approach might be to fix zeta at some value,

whereby from the given K and equations (3-5), (3-6), or
e

(3-7) alpha could be computed. Equations (3-13) could then

be solved for, first, omega and then beta. The calculations

would prove tedious, however.

27 .
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Example 3-2 ,.

The same system as used in example (3-1) will be studied

here, this time with tachometer feedback alone. The same

system performance specifications are to be met, namely,

K >6, zeta = 0.7, and omega = 10. The compensated system'se-

characteristic equation becomes:

S +3S +(2+KKt )S+K = 0 (3-14)

.4-.

"', Letting a=KK and 3= K here, equation (3-14) becomes:
t

4._

3 2S +3S (2+ a)S+3 0

From equation (3-13) it is found that:

'= -2+30(l.4)-100(0.96) = -56

Since alpha is negative, it is seen that positive tachometer

feedback is required. Further, it is found that the

*" remaining root (when equation (3-14) is divided by

S 2+14S+100) is positive; the system is unstable. Hence *4%4

the desired system specifications cannot be met with

tachometer feedback alone.

c. Acceleration Feedback Only

Let H = K S 2  The characteristic equation of

a

the compensated system becomes:

28
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Sm+ern1S+. .+(e+KK )S2 +e S+e 0+K 0

Proceeding as before, where now Q=KK and O3=K:
a .

B, (2 Ult2 B 2=w2U2

C 1 1 2 2

m k km k k
D, 1 kw k-l 2 (-l)d kw Uk

k=0 k=0

-. Solving for alpha and beta yields:

-2  1. (ik dk-2

U2 k
2 (3-15)

4-m k k 1 mk k
Y. (-1) dk Uk Ic-- (-1) d w Uk

k=0 - 2 k=0k k

Calculations for alpha, beta, and K are performed in the
e

same manner as with the preceding tacliometer feedback

example.

Example 3-3

The same system of examples (3-1) and (3-2) will now be

compensated using acceleration feedback alone. As before,

K .-K >6, zeta=0.7, and omega=10. Therefore K =-and the error
e- e

29 '
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coefficient is unaffected by the acceleration feedback. Hence

one can conveniently choose K=12 to meet the specifications.

The compensated system's characteristic equation becomes:

S3 +(3+KKa )S2 +2S+K 0 (3-16)

If K in equation (3-16) is set equal to 12 as prescribed, only
'- .-

one parameter remains and the parameter plane equations

produce an indeterminate solution. If K is left as the -. 4..

variable beta, then equation (3-16) becomes (after the usual

substitutions):

3 2 .4
S3+(3+c )$2+2S+1 = 0 .-'.

By employing equations (3-15), one obtains a=4 and 3= -700.

Since beta is negative, it is concluded that the desired

roots (i.e., desired values of zeta and omega) cannot be

realized using acceleration feedback alone, and of course

neither can the desired error specification be obtained.

One would therefore choose an alternate method of

compensation.

If one chooses to use feedback compensation then

perhaps tachometer plus acceleration feedback might be

attempted first using equations (3-9) and the appropriate

steady-state error specification. If the specifications cannot

be met in this manner, then it follows that neither P

30
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*th 1 cast: ei ther the system's6 sp.c i f icat lute-, milm-, bec'a-. or

ano the(2r t ype o f c ompe n sa t ion mus t be u t i 1 i 2.d I f I t is

found that the spec i f icat ions art- ach 1 evabl k. wi t hi ht lc nb 1 ne(.d

tachometer and accul erat ion feuedback , thun , ifI de--,1icd,

* equat ions (3-13) and (3-15 ) (an he emplo5oy'd Ii) I n%\ t-t ga t -

t lt! f easi bi 11tyN o f tUac htlicet e ro r ac cc- Ie-rLa t i u d ba ck aIli,

res pt.cti velIy.

d. Case Fo r Wh ic h Feedbac k I s Nout A\v ai I L )th2 'Ne.ar 4

The Fo rwa rd Pat hi Amp I i f i er

+ 

+

4,.. _ S(s-+1)(S+2) .7

Figure 3-2

Figure 3-2 shows a sys temn similar, to that u-sed

. in e.xample (3-1 ) except t hat now the feeudback is- i nserted a t

the output terminals of the amplifier repre~sente-d by gain K.

*This ilIlust rates a system for which i t. may not he( pos)siibLle

*or practical to access thle inp)Ut terminal.- of the, e-rror

detector. This problem will be solved by metns of an example.
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Example 3-4

As before, the same system specifications are to be met,
, . I.

i.e., K e>6, zeta=0.7, and omega=10. The characteristic V

equation becomes:

S3+(3+K )S2 +(2+K t  = 0
a t

Letting C=K and _

3 2 (-7S +(3+a)S +(2+0)S+K = 0 (3-17)

Comparison of equations (3-17) and (3 -10a) show that they

are identical, that is, the solution obtained for alpha and

beta in example (3-1) applies. There, alpha and beta were

found to be 48.5 and 623, respectively, while K=3750. For

the present example no further computations are necessary

to find K and Kt, since they are now the parameters alpha

and beta. This points out an important advantage of the

parameter plane method, namely, that the solutions depend only

on the characteristic equation and not on the system from

-. which the characteristic equation was formed. This principle

can similarly be applied to control problems involving

tachometer or acceleration feedback alone.

2. Cascade Compensation %

For a unity feedback control system let G have the

form of equation (3-1):

32
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K K .e( s) sm+em S m-l+. .. +eLSL (3-1)

where again K is the forward path gain (a variable) and

e(s) is a polynomial in S representing the poles of the

open loop transfer function of the uncompensated system.

The letter L again indicates the system type. If in order

to satisfy the system's requirements a cascade compensator

GC is required, then let:

G P(S+Z)"''

C Z(S+P) , .

With a d.c. gain of unity, placement of this compensator in

the forward path will not affect steady-state accuracy.

With GC as indicated here, the values of P and Z are

computed to obtain the desired system response. If P is %

less than Z, a lag network is required and the factor of
P of the compensator is inherently present due to the

4-- z
physical nature of the compensator (usually an R-C network).

In this case all forward path amplifier gains can remain

unaltered to meet the specified accuracy demands. If,

however, the computed value of P is greater than Z, a ,V'

lead network is required and the compensated system's

P
forward path gain must be raised by the factor of to

meet the accuracy specifications. As the physical nature
P ,.

of the lead network is such that the factor is not

33
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inherently present, this factor must be provided either by

adding an amplifier in cascade with the lead network or by

raising the gain K of the existing amplifier as required to . -

achieve steady-state accuracy.

Continuing, the compensated system's forward path

transfer function is:

P . *-%

p~
G  K P S+Z _ (+ KG(s) Z S+P S+P eTs)

Applying the definition of the error coefficient one

obtains:

K e ¥s) (S+P)

K lim S I K (S+P) Ke L

and again assuming a type 0 system where L=0, the compensated

system's characteristic equation becomes:

p
e(s)(S+P)+KY(S+y) = 0 !*."-

or after expansion:

Sm+l+(P+eml )Sm+(Pem_ 

) 21 M91  m-2

+(Pe 2 +e (KY+Pe +e )S+P(e +K) = 0 (3-18)* o o

-'-34
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Letting %=P and y, equation (3-18) becomes:

M14-. 1 m M-

S +(Ct+e )S +(e 1 + er )S +...rn-1 rn-i m-2

+(e +(K +e +)S+e 0 (3-19)
2 11 e0)Sci( 0+

Comparison of equation (3-19) with the general form of the

characteristic equation as specified in equations(2-1) and

(2-6), it is apparent that K=m+l, b0=eo+K, c0=d0 =0, bl=e,., , c2 0,.2.1

c1=K, d1 =eO, b2=e2 c2=0, d 2=el, etc.

It is important to note that the parameter plane

variable beta represents the pole-to-zero ratio of the

cascade compensator. The S-plane can be divided into regions

where lag compensation or lead compensation is needed. By

mapping of variables in the above manner, the parameter .

plane can effectively be divided into corresponding regions

above and below the straight line =l. Then, for values of

beta less than one a lag network is required and for beta

greater than one a lead network is needed. In addition, if .

beta is le.;s than 0.1 or greater than 10, a multiple lag or

multiple lead network, respectively, is required.

Based on equations (3-19) and (2-8) it is found that:

B 2 +l k-2 k-2 k-i k-iB1 -(eo+K)+ e +...+(-I) k  ) U +(-l) k
2

I, 0

35
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2 k-2 k-2 k-i k-iD ~e +..+(-I) em k-+3-l) eri k-

kuk
+ (-i) Uk

B -w +w e U+...(-i)k-2 k-2 U +(-l) k-il k-i
2 =-w 1  e2 2 ~ k-2 k-i

C =w2

2 k-2 k-2D 2 -we +we1U 2+..+(-i) e m-' uk-

(3-20)
kl kiu k(Ik

rn-i k-i k *.

and from equations (2-9) it is found that:

-DBDB D A

a D1  2 21 1 2 (-
B /3 =? (3B1

1 2 1

For a type i system, e in equations (3-20) is set equal to
0

zero, for a type 2 system e =e 1=0, etc. On the basis of

equations (3-20) and (3-21) a cascade compensator can be -V.

designed.

Exampie 3-5

For the system of Figure (3-3) it is desired to design a :..-

cascade compensator which places a pair of roots at zeta=0.5

and omega=1. The error coefficient K should be 50.
e .

36
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.K

+ , .

S+P S-t-(S.4)(.-

, %p J*

Figure 3-

K . p

Fiur 3-3

44 3*2

S +(8+P)S3 +(17+8P)S' +(10+17PY+50Y)S+(10-K)0

Andpyin tequti on of20 arid a-2d o obtains

-

B, = -03 C, = -50

D, 9 D) 6

=0.0179 =P =3 0.0117 -Y
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P
and since Y=, Z=1.529. This is a lag network for which the .. ..

factor 0.0117 is inherent in the R-C filter design.

Although treatment will not be presented here, the

algebraic app]ication of the parameter plane technique can

be readily applied to combination cascade and feedback

compensation.

B. DOMINANCY OF THE SPECIFIED ROOTS

In the preceding section nothing was done in the

calculations to make the specified roots a dominant pair.

As mentioned earlier, the ability to predict a system's

response on the basis of the location of a pair of complex

conjugate roots was based on the assumption that the

magnitude of the real part of the specified roots was much

less than that of the remaining roots of the characteristic

equation. In practice, if the real part of the specified or

primary roots is one half to one fifth or less of the real

parts of all secondary roots, the system is said to be

dominant in the primary roots. In many cases the system

will still meet the specifications even if two pairs of complex

roots have the same real part, provided the zetas for both

pairs of roots meet the specificqtions, and the undamped

natural frequencies are such that the component time responses

are not highly additive. Further, even if there exists a

characteristic root whose real part is closer to the origin

than that of the primary pair, the presence of a closed-loop

38
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zero could make the residue of the close-in root negligible

as compared to the primary root. If possible, however, on1

usually attempts to make the real parts of all secondary

roots large in magnitude.

In the preceding examples it should be pointed out that '

in many cases there were actually three and possibly four

variable parameters. For instance, the forward path gain was

usually a fixed value in the computations so as to meet the

minimum steady-state accuracy requirements. There is,

however, no reason why the gain cannot be raised above the

minimum value, thus permitting a third degree of freedom.

When cascade and feedback compensation are used simultaneously,

the forward path gain and tachometer gain become the third

and fourth parameters.

Recall that the system characteristic equation has the

m
form f(S) = kk=0 , where ak=bk +ck +dk • To realize the

k=O '0''

system specifications, one places a pair of complex roots
ij i_" 2=

at S=- +j / - 2 which implies that S2+2IIS+WI0.

Since C and u) are known, the quadratic can be divided

out of the characteristic equation, leaving a polynomial

which contains the secondary roots of the characteristic

equation. Since only two of the variable parameters were

used in fixing the primary roots, the remaining parameters

will appear in the coefficients of the quotient polynomial,

and it is these parameters that can be varied to achieve

dominance.
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Instead of division to obtain the quotient polynomial,

coefficients of like powers will be equated to achieve a

system of equations. Let the quotient polynomial be

given by:

fn(S) fk 0 (3-22)

k=0

where n=m-2, i.e., equation (3-22) is of order two less than

the characteristic equation. Applying equations (2-1),

(3-22), and the quadratic it follows that:

n m--:

C$2 +2 iS+ 2  n k k
11 + fS = a k (3-23)1 = k= k

Taking a =1 and equating coefficients of like power:

a f =f=M n

a f +2C.M1 n-l 1 1

am-2 fn2+ 2 CIwl f +W

a- - n-l 1
(3-24)

2
+ = 2l + f 2 1

0= f22 t +'f

40

.1

m °'. •



.- Equations (3-23) and (3-24) can be solved for the coefficients

f in terms of the coefficients a. The results will be

applied to the following cases:

Case of k=3, n=l

Equation (3-23) becomes:

($2 +2 S+ 2  3 2
1 1 w+ 1)( fS+fo)=S +a2 S +a S+ao

Equating coefficients of like power one obtains:

a 3  f =1

2 0-1 1 1

2
a f W +2 li f1 1 110

2 . ,
a0  0 1

Solving for the coefficients f results in:

f l 1

a0  (al- 
2)

-= a2-2 (3-25)0 2 W 2 1 1
1
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Case of k=4, n=2

Proceeding as before, the a coefficients become:

a 4 f 2 =1

a 3 = 2 + f

2 ,(3-26)

22  = i f f

a_ f +2 E
1

~2 W

20 = f0 110

2 a

_0 _ 3 1~ +2 a2 - 4

_0 W &1 2 2 1 1 a3 -W1 +4 1 1-~

(3-27)

-. "

.: :
i Wh n slved forthe coef ici ntsf, e uat ons (3-2 ) y eld

*" 42%
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Case of k=5. n=3

Similarly:

a" f 1 -5 3

a 4 =2 1 +f2

2
a3  1 2 1

a 2 f +2,w 1 f +f0

a5 1 f3 1 "0--

2

0 = 0

and:,

2,

a= W2+f 1 2+ 0
. -

a 2 (4 24 a

2 4 1.,w."0--4and : i::

a a*4a.w

3 13 0 1
33 =14

,. 2c' a

f"1 2 1 0 2C4' al 2" a2 a4- -- a(- 1 -- ) 3"-".

1 1 1 i

a3  1 0

3 4 2

434

=a 1  2 ao '22 4.4

I =J O 11- fl4 + 4k21u 2

- a 3  ,2,'%

1 -'"

, •.~~ ao4"-'.-
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Although the coefficientsof f have been derived for only up to

the fifth order case, they can easily be obtained for higher

order cases if necessary. %
S 55

Example 3-6 (Third Order Characteristic Equation) e.

'-4+

Figure 3-4

Design a cascade compensator for the system of Figure (3-4)

to obtain:

1. Characteristic roots at zeta=O.5 and omega=40.

2. K >250.

3. The specified roots are to be dominant.

The characteristic equation of Figure (3-4) is:

S+ (4+P)S2 + (4P+KY)S + El' 0

or

S3+ (4+a)S 2 + (4a+K13 )S +Ka 0 i~~

where -'P and fl=vY.'5
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Here G K _ K -oe=0 e=4, e 1 U1 U=0

e ss s+4s S 0 , 1 ' 2

Application of equations (3-20) yields:

B - -wK+1600 B 4-'L+ iLj 1440 .

1 =K~ii2 2

C, 0 C --w K =-40K
1 2

2 3 2 3I
D 4w W U -57600 D2 =4w U2  ~U 3  6400

2

From equations(3-21) are obtained:

a 57600
-K+1606

-1440(-57600)-(-K+1600)(6400) (3-28
-40K( -K+1600) -

For any value of K, equations (3-28) will produce values of

alpha and beta that provide characteristic roots at zeta=0.5

and omega=40. However, only certain ranges of K will meet

the steady-state error and dominance requirements. To satisfy

the error consideration it is necessary that K>1000. Since

f (s) is of order one, equations (3-25) apply and: ,

f,=

a0  (a-)_

f~~. - =.'a V
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From the characteristic equation it is seen that

a2  4+c xd

a 4a + Ks

The real part of the specified roots is ',=20. Arbitrarily

* choosing a dominance factor of five, the dominance criterion.

becomes: f0 > 5tw = 100. To satisfy this requirement, the

simplest form of f0 will be chosen, namely f0 -= It is

then seen that f -Ka 57600K 1 36K
o 1600 -1600(-K+1600) 1600-K> 0

This requires that K>1176.5. Since K>'1176.5 also satisfies

the error specification, a value of K=1180 is arbitrarily

chosen. Using this value of K, it is found that:

OLc=137, B=4.3 and f0=l01. As a check, from the expressionee

V09 2w:

f (4+137)-2(0.5)(40) =101
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Example 3-7 (Fourth Order Characteristic EqluaLin)

K ,.., ,-

+ K

S+. S 1 )(S+5)(S i10)

2 7I
K OS + KtSE.-. _-
.....LI J.

Figure 3-5

Compensate the system of Figure (3-5) using tachometer plus

acceleration feedback to obtain:

1. Characteristic roots at zeta =0.5 and omega 2.

2. K >12.

3. Dominance of specified roots.

The characteristic equation of Figure (3-5) is:

4 3 2S +16.5S +(73+a)S +(82.5+8)S+25+K 0

where a=KK and O=KK
a t

G= K K
-(s) S'+16.5s3+73S 282.5S+25

417.
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By inspection e0=25, ei=82.5, e2 =73, e3=16.5, e4=1, U =1,

U 3=0, and U 4=-1. When equations (3-9) are employed one finds:

K-135 K-24
4 '2

From the characteristic equation it is seen that a4=1 , a316.5,

a2=73+a, ai=8
2 5+6, a0=25+K. Since the quotient polynomial

2 , 2

fl(s) is a quadratic, i.e., +f S+f 2=0, equations (3-27) apply.
f 1() is a

It would be desirable that, from a dominancy viewpoint,

f >5 w= 5. However, looking at the dominancy equations

for this case (equations (3-27)), it is seen that one of

the several expressions for f is fl=a - l which is a

fixed constant even though the remaining expressions for f

involve one or more variables. Thus, fi=14.5. Noting the
a0

most simple expression for f0 in equations (3-27), f0- --.

Now, since f 1=14.5>5, a dominant situation already exists.

However, the system's performance can be further improved

by choosing appropriate values of zeta and omega for the

secondary roots. From the error specification it is

a 02"a
necessary that -->12 or K>300. Now f (s)=S +14.5S+ 2-

22
or f (s)=S +14.5S+6.25+0.25K. For K=300, f (s)=

11
2 2

$ +14.5S+81.25. Therefore, 2 W= 14.5, u2 =81.25 implying
2 2 2

W2=9. Then zeta=0.806. These appear to be reasonable

values for 2 and w 2 since the secondary roots taken alone
2 2

would produce less overshoot and a smaller settling time

than the primary roots. Using this value of K one obtains

for alpha and beta:

....7-
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=41.25, 8= 138

and since a=KK and B=KK K is found to be 0.1375 while
t a' t

K =0.46.
a

As an added bonus of this method, all the roots of the

characteristic equation are now known and the system's

time response could be computed if desired.

'F7
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IV. PROGRAM DESCRIPTION

The goal in dexeloping any computer aided design program .

should be twofold: (1) provide the user with a single,

easily understandable, easily usable and comprehensive

engineering too., and (2) dramatize its efficiency above

that of other currently available methods. Through the examples

of the following chapter the second goal will be demonstrated.

It is first desirable to reveal the methodology and internal

structure of the parameter plane curve program--as a

consequence it is hoped that the first goal will be affirmed.

A. THE PROGRAM

The parameter plane curve--generating program, or

program" as it will be called henceforth, consists of a

large driving routine which includes all necessary

calculations with which to generate the curve data, and

several supporting subroutines (i.e., curve plotting, root

solving, data saving, etc.). This entire package is

included as a user-selected option within another controls

system computer aided design package. Among other options,

the latter CAD program includes a root-locus analysis--

as mentioned earlier, the usefulness of either the parameter

plane or root locus technique for design of a controls

system is somewhat limited, but in combination their
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effectiveness is synergistic (Chapter V will assert the dual

roles of the root-locus and parameter plane methods).

Facilities available within the program are many; the

major options are:

1. Plotting of constant zeta curves, with zeta as a
function of omega. -. ,

2. Plotting of constant omega curves, with omega as a
function of zeta.

3. Plotting of constant sigma (real root) curves.

4. Plotting of constant zeta-omega curves.

5. Tabular output.

6. Rescaling of the plots.

Input of certain data is required to enable the program.

These inputs include:

I. Starting value of w'.
n

2. Decades of w to be considered.
n

3. Number (and values) of constant zeta, omega, sigma,
and zeta-omega curves.

4. Coefficients associated with the constant, alpha, and
beta terms of the characteristic equation.

Each of the basic program option areas will be described in

appropriate detail, as well as their interaction with the

input data.

1. Constant Zeta Contours

In practice design specifications for control

systems are given in terms of percent overshoot, settling

time, error constraints, etc. A value of zeta can be

associated with the first of these specifications--that is,
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a given percent overshoot requirement can be related to a

specific value of zeta. Given a specific zeta value, the '

program calculates-the alpha and beta coefficients of the

characteristic equation by holding the zeta value constant

and varying the value of omega. The limits within which

omega is varied are defined by the user's choice of the

initial w value, and the number of decades of omega to
n

be considered.

From the nature of the mapping process, it is clear

that when the contour of the coefficient plane passes through

a designated point (M-point), the original mapping contour

on the S-plane passes through a point which is a root of the

characteristic equation. The zeta value chosen for the

contour is then the zeta for the root. The value of omega

associated with the M-point is the radial distance from the

, origin of the S-plane to the root. Thus, a complex root

is determined when the M-point lies on a constant zeta curve

of the parameter plane. The value of this root and its

complex conjugate is:

S --

"

• .. __. "

If the characteristic equation is such that several complex

roots exist, then the parameter plane curves required to

realize these roots must all pass through the M-point. If

the complex roots have the same zeta but different omega
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zeta contour is+defined, omega, alpha, and beta are also

defined, and all roots of the characteristic equation are

... ..

thus fixed. 1.

2. Constant Omega Contours

Within the program, for a given value of omega, zeta

is varied between zero and one inclusively while omega is

held constant.

As with the constant zeta curves, any point on a

constant omega contour is the omega for a complex root of the

rcharacteristic equation. By selecting an operating point,

zeta is also defined whereby a pair of complex conjugate roots

is established. Again, once any point is chosen on either

* a constant zeta or a constant omega curve, all roots of the

* characteristic equation are established.

3. Constant Sigma Contours

When real roots are to be evaluated, it is is ."'-

convenient to return to the characteristic equation:

Z ak S 0 (2-1)

k=O k

where, again, a represents a linear combination of constant,

alpha, and beta terms. S=-a (a real number) is then an

equation of a straight line on the parameter plane. If any

line of constant sigma value passes through the M-point,
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then the alpha and beta coordinates of the M-point satisfy

the characteristic equation for a real root located at -o.

For program considerations, one enters a positive

value for sigma (corresponding to a real root at -a) and

the constant sigma contour (straight line) is developed.

The coordinates of any point on this curve produce a real

root at -,. That this is a useful tool, consider that

system specifications can be achieved by placing a pair of

complex conjugate roots of the characteristic equation at

a specific location. To ensure dominance of this root

pair, the real part of the complex roots so placed should

be smaller in magnitude than that of the remaining system

roots. Roots placed at a specified sigma value can thus

ensure at least one real root whose magnitude is greater

than the real part of the intended complex conjugate pair. -.-

4. Constant Zeta-Omega Curves

For a fixed value of zeta and omega a pair of complex

conjugate roots is defined in terms of the expression:

S = -i + j/ 1- 2

The real part of these roots is, thus, defined by the

zeta-omega product. Note that settling time is defined as

T 4 If the % product is known, so, too, is the V.
5

duration of the transient response. Thus, by specifying a
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constant value for the zeta-omega product, any point on the

contour generated by this value will produce a given

settling time.

For any of the parameter plane contours, it is desirable .; .z

to ascertain the values of the characteristic roots for every

few values of alpha and beta. This feature has been

incorporated within the tabular output facility as described

below.

5. Tabular Output

For each of the zeta, omega, and zeta-omega parameter

plane curves, an arbitrary though reasonable 300 points are

calculated with which to plot the contours. For the constant

sigma curves, only two points are needed to define the

required straight lines (in practice, 4 points are generated - .-

to ensure that the sigma contours can be plotted within the

user-defined axes limits). Because of the bulk of data Kk-

points so generated, tabular output is offered as an option

(as is graphical output), and all points so generated are

listed for the user. In addition, it is worthwhile to

calculate system roots for given values of alpha and beta.

However, computation of roots for each alpha and beta pair "

would cost unnecessary computer time and will likely tax the

user's patience with the bulk of output so generated. Thus

5 5 * .,
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the characteristic roots are generated for every tenth

pair of alpha and beta values.

6. Plot Rescaling

Regardless of the plot scale selected by the user,

the program generates the full 300 data points for each

curve requested (4 points for constant sigma lines). When

the graphical output option is requested, the first family

of curves is automatically scaled to encompass each and

every data point. The disadvantage of this technique is

that, because most activity for the vast majority of systems

occurs near the physical origin (i.e., alphabeta=0), the

curves may at first appear within only a very small sector

of the entire plot area, and often they are indistinguishable

from one another. The advantages of automatic scaling for

the first set of parameter plane curves far outweigh this

disadvantage. First, by plotting all available data points,

the possible limits for alpha and beta are exposed--this is

important if very large values of alpha and/or beta are

required to meet the design specifications. Second, for

some systems the area of activity may not occur near the

origin, and automatic scaling spares the user the task of

selecting a sector and possibly missing a sector of interest. i-

1Although a seemingly arbitrary choice, the generation

of characteristic roots for every tenth alpha, beta pair
produces a very tidy output on the commonly-used IBM-3278
computer terminal.
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Once the user is able to view the panoramic alpha,

beta parameter curves, it becomes obvious which sector(s)

are of interest. The user then has the option to rescale

the set of curves by selecting upper and lower limits for

the alpha and beta axes. He may continue to rescale the

family of parameter curves as often as is desirable, and at

any time the autoscaling option may be recalled.

The curves generated by the above program are

sufficient to explore most control system engineering

problems. The use of these parameter plane contours, and

their interaction with one another, will be evidenced in

the next chapter. The source code listing of the program

is included as Appendix B. %.

B. INSTRUCTION TO THE USER

The parameter plane program is highly interactive--the .

user is prompted for each required input. A brief

description of all but the most trivial input items follows.

- Starting value of Ci: For most control systems the
initial value of n nis chosen to be zero. Because -
is used in the denominator of certain of the parameter
plane equations, w must be greater than zero. However,
the user may choosR w arbitrarily close to zero if
desired. n

- Number of decades: For the majority of control system
problems a suitable number of decades to be considered
might be two or three. For higher order systems, it
would be advisable to start with a slightly larger
number of decades, especially if the initial ) value
is small. For subsequent families of curves, Phe
number of decades can easily be changed.

AP. IN
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-Constant, alpha, and beta coefficient values:
Characteristic coefficients are requested from the
highest to lowest order term. By way of an example, d
a third order characteristic equation might be: [

2S+ (3ar + 3 + 10)S + aS + (8+5) = 0

Here, the constant coefficients would be entered in the
following sequence: 1,10,0,5 while alpha and beta
coefficients would be entered as 0,3,1,0 and 0,1,0,1 .

respectively.

- Zeta values: By convention, values are restricted to
between zero and one, inclusively..

- Sigma values: Positive values of sigma correspond to
negative real roots. Since few, if any, practical
engineering applications exist for designing a positive
real root into a system, negative values for sigma are
disallowed.

- Omega values: Values for constant omega curves are
restricted in the lower limit tthe starting value,
and in the upper bound by wi nxlouec a~es n

- Zeta-omega values: As with the constant sigma curves,
values for constant zeta-omega contours must be greater -

than or equal to zero.

The user then has the following options:

1. Review entries.

2. Change any entry.

3. Tabular output.

4. Graphical output. .

Remember that tabular output includes 300 data points

for all but the sigma contours. Characteristic roots are

displayed for every tenth alpha, beta pair. Because of the

bulk of output for this option, use it only when necessary.

If a printed copy of the tabular output is desired, type
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"record on" before invoking the program. Upon exiting the

program, type "record off", after which the user may save

the preceding terminal session in a listing file designated

by a name of his choosing. Simply print the listing file, ,

which will include all output which has transpired on the

terminal between the two calls to "record".

When graphical output is requested, all curves are

superimposed on the same plot. The first set of curves is

produced with an autoscaling feature, which plots all

points calculated (the range of points depends on your

choice of initial w number of decades, zeta values, omegan'

values, etc.). For most characteristic equations only the

first quadrant (i.e., positive alpha and beta values) will.-1

be of interest, since negative values usually (but not

necessarily) imply negative characteristic coefficients and,

thus, positive roots leading to system instability. The

nature of the first (autoscaled) set of curves will reveal '-

the actual areas of interest for subsequent plots for the

same system.

Finally, after each family of curves is plotted, the

user has six additional options:

1. New problem.

2. Same problem.

3. Root finder.

4. Save problem.
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5. Create "DISSPLA metafile".

6. Return to main menu.

Items 1, 4, and 6 are self-explanatory. The remaining

options deserve some additional explanation.

- Option 2: This option can be used to re-enter the
problem at a point prior to actual plotting. Then, :..
specific input values can be added or modified,
tabular and/or graphical output can be requested, and
entries can be reviewed. It is within this option that
the graph coordinate axes can be rescaled. If user-
defined scaling is desired, the minimum and maximum
values for the axes are requested. -

- Option 3: Although within the tabular output feature a
set of characteristic roots is produced for every tenth
pair of alpha and beta values, the bulk of output using
that option may prove excessive for some applications.
Here, the user has the option of choosing specific S
values of alpha and beta (e.g. extracted from the
family of parameter plane curves) and obtaining the
system roots.

- Option 5: The program provides a choice from among
four graphic output devices. Usually the user will
nominate the TEK618 graphics terminal due to its
relatively high quality plot resolution. Once the v.
user has produced a parameter plane plot to his liking,
he may wish a final plot of very high resolution. By
selecting this option, the plot is stored as a DISSPLA 5
metafile, and the program is terminated (termination
of the program is necessary at this point due to an
anomaly of the DISSPLA graphics package). Simply type ..
"DISSPOP" and follow the simple instructions, choosing

the default options as they are presented. Within the
"DISSPOP" routine, any of several output devices can be .'

called, including the high resolution Versatec plotter
and the 3800 laser printer.

/. ? .
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V. PARAMETER PLANE CURVES-GRAPHICAL METHOD

A. GRAPHICAL SOLUTION

The algebraic solutions discussed in Chapter III have the

disadvantage that a fixed value of zeta and omega must first

be chosen to compute the alpha and beta terms. In some

instances it is possible to modify the remainder polynomial

so as to ensure that the specified roots are dominant.

However, it is not always possible to guarantee that roots

placed at a specified location can be made dominant. Thus,

an exhaustive trial-and-error procedure may be required to

achieve the best values for the various parameters. Trial-

and-error may also be required in the design of cascade

compensators where a specific root location may require

parameter values that are not physically realizable. In

these cases, the calculation must be repeated in terms of

slightly modified specifications; possibly a different means

of compensation must be used.

To avoid this trial-and-error analytical approach, one

can employ the graphical solution. Once a family of curves

is generated by the program one can, by choosing an M-point

in the parameter plane, obtain from the curves the n roots
of the nth order characteristic equation. The trial-and-error

procedure can then be done visually to reveal an operating

point which best meets the given specifications.
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0. Example 5.1 (An Attitude Control System for Large Launch
Vehicles)

compu~nON AG 0 DYNAMICS

STABLE PLATFORM

ACCELEROMETERS

_GUIDANJC OTHER

LAW SENSORS

Figure 5-1

Figure 5-1 shows the mechanization for a control system fur a-

large launch vehicle; Figure 5-2 shows the equivalent block

diagram '

++

Figure 5-2 .~'
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I
where the equivalent G(s) is:

(aS2 1 K )(S2-C)
G(s) a0S +KS 2

S + e~S + S + a1 C
(-2

e e

From G(s) one obtains the system's characteristic equation:

,,,,

S6) + e S + (1+a )s + (a C-4K )S3 + (K a C)S2+ 0 1120

CKS- CK 0I e

where a a K K en control system gains

0, 1)S =1 2-<$3.S' 2

=damping ratio. of control servoe

=natural frequency of control servo

Gains s and K are chosen as the system ha aestic and .,

S 1 2 2.">

respectively, to be portrayed in the parameter plane. One

must then find suitable values for these parameters to yield

a desired stability margin and a satisfactory transient

response. For a typical choice of system parameters (such

as those describing Saturn V), it is assumed that:

e ".0.717

= 4.71 uHz l 29.594nc radian rlsro..

e

ean K anK 2 ae hoe astesse paaeesaad , .V

a -0.5
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a1  1.0

C 0.7
-V- -.s -q

Then the system's characteristic equation becomes:

0.0011S6 + 0.0485S5 + 0.5S 4 + (0.7+a)S3 + (0.35 + )S2

- 0.7aS - 0.7 = 0

Various values of a and a were used to deduce their effect
0 1

on the stability regions, which is indicated in Figure 5-3.

The numbers of stable and unstable roots, respectively, are

portrayed in parentheses for each region of the parameter

plane.

The analysis procedes as follows: the =0 contour repre-

sents boundaries of stability (or relative stability when

>0) associated with pairs of complex conjugate roots. The

S=O (sigma=O) curve represents real root stability boundaries.

The region of stability is thus that area bounded by these

two contours. See Figures 5-4a and 5-4b for a magnified

view of this area. Any negative alpha-beta pair from within

this region will exhibit six stable (i.e., all within left-

half S-plane) roots and system stability will be assured.

Note that from the form of the characteristic equation,

both alpha and beta must be negative to obtain a stable

system. To illustrate, let us select an arbitrary operating

point constrained to lie within the lower loop of Figure 5-4b
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ATTITUDE CONTROL SYSTEM

60-

50.......

..0.........

30........................

Ld

0............... ........... 0.00

(4,2)(2,4)

-10-II

-5 0 5 10 15 20 25

ALPHA

Figure 5-3
Paramneter Plane Curves for

0.0011 S 6 + 0.0485S 5 + .~S 4 +(.OLS3 +(.5'iS2

- 0. 7BS - 0. 7c. =0:.
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ON ATTITUDE CONTROL SYSTEM

0.50. .......................... .............................. ----.............

0.500

-0.250

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

ALPHA
Figure 5-4a

6 Parameter P ane Curves for
-~ 0.0011S + 0.0485S5 + 0.5S' + (O.7+ct)S3 + (O.35+2-)S

0 .723S 0 .7a~ 0

663

04



* ** .A.. 'A -- -

ATTITUDE CONTROL SYSTEM

0.02-

Z= 0.00

*~~~S 0.00sao

-0.02 .7

LU .

-0.04.....

S ~-0.08-

-0.40-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00
ALPHA 7

Figure 5-4b
0 *01 1 ~Parameter Plane Curves for9
0.011S +0.0485S 5 + 0.5S4 + (0.7+ca)S + (0.35+3)S'

-0.735 - 0.7a~ 0
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and also satisfying the requirement that both alpha and beta .:.v

be negative. Superimposed on Figure 5-4b is the constant

E=0.5 contour, upon which our M-point might be-chosen. if

we select, say, a=-0.15 and =-0.02 (corresponding to =0.5.?

and w=0.5), the system roots are: :-

-0.26 + jO.45 -

-dominant roots •--
-0.26 - j0.45".-'

-0.32 + j0.12-

-0.32 - j 0.12 ::.?.

-14.6 + j0 ":

-26.7 + jO.,...

Coincidentally, the roots associated with our choice of zeta

and omega are seen to be dominant The actual choice of an

operating point may depend on other criteria not discussed

here. ._.:

Since K1 and K2 (a and 3,2respectively) are functions "

Of c ,aO. ,, e and E, they may be determined forare:
e' e-.- ,

various instances of flight by plotting several constant

zeta and constant omega curves. Actually, K 1 and K 2 vary so

little within the range of values used for C, for specified %.:

values of and _j, that it becomes possible to choose constant " -

values for K I and K 2  $-

-0.26 - -0.45
1 2

power of thare seeto be graphical te cnique. Knowingalc
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nothing more than the system's characteristic equation, the %%

static and dynamic stability boundaries may be obtained to

define the area of overall stability. Of course, other

system constraints may exist to further limit this area.

*i As a note, the root-finding option available within the

program was used to confirm the numbers of stable and

unstable roots lying within each region of Figures 5-3 and 5-4.

Example 5-2 (Alternator Voltage Regulator) -

In designing a voltage regulator of the type shown in Figure

5-5, we must find values for K0, K1 , and K that provide

stability and good transient performance. :-.

EXCITER ALTERNATOR

.4.:

+K2S 2+K S+K 0  '--

Figure 5-5

The characteristic equation of the system, including alternator,

tie-line, etc. is (see reference 8 for details):

5 4 3 20.0095S 5 + 0.1325S 4 + 1.72S 3 + (K2+7.55)$2 + (1+9.1)S -.

+ K -2.5= 0
0 '
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We will consider K 0=0 as fixed and a and a as variable para-

meters corresponding to K2+7.55 and K1+9.1, respectively. 0-

Curves of a versus $ are plotted in Figure 5-6 with wn as

the variable parameter (for this system, K and K2 are

known to be functions of w alone). Since the program plots
n :? ".

constant zeta curves as a function of varying omega, these

curves were selected as logical candidates to study the

problem. _

The beta axis corresponds to the zero value of damping

constant (sigma) since below the zeta=1.0 curve, the real

roots (Thaler and Brown 1960) are the negative slopes of the

tangents drawn from the point in question to the C=l curve.

The machine is then stable for any (a, B) pair between the

C=0 and S=0 curves. The greatest stability, of the machine .

is then possible when both zeta and sigma are largest.

Further, the best stability can be expected in the region

bounded by the E=0.3 and E=1.0 contours (Kabriel 1967).

Similar stability limits of a and can be investigated by

taking K as 10, 20, 30 and so on.

Consider now KI=0 as fixed. Then a and 8 will represent

the variable parameters K +7.55 and K -2.5, respectively.

The characteristic equation then becomes:

5 4 3 2WA
0.0095S + 0.1325S + 1.72S + aS + 9.1S + = 0
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Again, K0 and K are known to be functions of w alone. Here,0 2n

however, n can be solved explicitly [Ref. 8] and one obtains

three straight-line equations:

5.421a -~3.894

175.63t - 4085.0

/ or in terms of system parameters:

K = 2.5 V.
0

*5.421(K( 2+7.55)-Ko = 3.894 -2.5

* 175.63(K +'7.55)-K0 = 4085.0 - 2.5

These are plotted in Figure 5-7. The triangular region

bounded by these three lines represents a stable region. The

values of (a, 5) within the triangle and hence corresponding

values of K and Kcan be predicted for stable operation. .

The procedure can be repeated for further investigation by

*taking K1=15, 30, 45, etc.

The analytical parameter plane technique can be used to

determine the stability limits of K0 and K1 by choosing several

*constant values of K .But since K2 has to be selected2'

arbitrarily for this purpose, this method becomes cumbersome

and time-consuming. The method presented here, on the other

hand, can be used to determine the stable range of either
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ALTERNATOR VOLTAGE REGULATOR

80 Z i

6 0 - -- -- -- -- -- -- -- -- -- -- - - --- -- - .. . . .. . . .. .. ... .. .. .. .. ...o

4 0 - --- --- --- ---- --- .. ... ... .... ... -- --- ---- -- --- --- ---

I-~Z 0.30.

Z2 0.00

-20
-10 -5 0 5 10 15 20

ALPHA
Figure 5-6

5 Parameter Plane Curves for
0.0095S + 0.1325S4 + 1.72S3 + caS2 + SS 2.35 0
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ALTERNATOR VOLTAGE- REGULATOR

150- . ..

* 1 2 5 --- ---- --------- - .... ......

1 0 0 - -- - - - --- - - - -.. . .. -- - -- - - -- - - -

7 5 -- - - - - - - .. . ... .. . . . .. . .. . . .. . . - - --- - - - - -

5 ~ ~ ~ ~ SA L REGION 21 3AJj).BT=

BETA

-10 -5 0 5 10 15 20 25 30 .pmd

ALPHA

Figure 5-7
5 Parameter Plane Curves for

0.0095S + 0.1325S4 + 1.72S3 + caS2 + 9.lS + =0 .,
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K and K o or K and K2 fixing the third parameter. Over and

above the ability to predict -stable operation, the method

povides a direct measure of the damping at and aiuund a

chosen operating point.

Example 5-3 (Lead Compensator)

Consider the system:

',

ss + + K(S4-Z) 
-

.S+P S(S,)(S-4)

The characteristic equation is:

S.t + (5+P)S + (4+5P)S2  (4P+K)S + KZ = 0 .. .

Wu choose to cancel the pole at S=-l with the zero; thus

Z=1.0 and the characteristic equation becomes:

S4 + (5+P)S3 + (4+5P)S 2 + (4P+K)S + K = 0 2
L.t P =A and K =. Then the parameter plane curves are as
hwn. in Figure 5.8. For the coefficients of the character--

i-.tic equation to remain positive (and thus ensure stability),

it. i convenient to consider only positive values for alpha

and beta. By inspection we choose 7=0.5 and w =2.0 as a
n

7-
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LEAD COMPENSATOR

1000-

750............................----- ...................... .

. ... . . . . . . . . .-- - -- -

500-

-1 0 0 - -- -------: .. ........: ..... . -.. ..... . .. .....I ......

-60 -40 -20 0 20 40 60 .'-

ALPHA

Figure 5-8
Parameter Plane Curves for .

4 3 2'.
S + (5+Oi)S + (4+5cz)S 2 + (4ct-i-)S + $ 0
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LEAD COMPENSATOR

40-

30 -------

LJ

-10

-5 -2.5 0 2.5 5 7.5 10
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Figure 5-9
Parameter Plane Curves for

S + (5+cL)S 3 + (4+5a)S 2 + (4c4 )S + 0 .
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good operating point, for which at 4.0 and 3 =24.0. The

corresponding vicinity of Figure 5-8 is re-scaled in Figure

5-9. Again, using the root-finding option, the roots

associated with this ( ) pair are shown to be dominant.' n .

Example 5-4 (Lag Compensator)

If we are especially concerned with steady-state accuracy

for a ramp input, it may be advisable to design a lag

compensator. The parameter plane permits us to consider

steady-state accuracy while designing the transient response."'["

If our system is the same as that considered for the lead

compensator, the characteristic equation remains:

S + (5+P)S3 + (4+5P)S2 + (4P+K)S +KZ 0

KZ :
But now the error coefficient is K 4-P Having three

e 4P avnthe

unknown parameters, K, Z, and P, two must be selected (or

some combination of two) to be a and B while a numerical value

is assigned to the third. Once this choice has been made

th- parameter plane curves can be calculated and plotted, and "

the loci of constant K can be superimposed. Let Z=0.1,
e

P=a, and K=. The characteristic equation becomes:

S + (5+0L)S 3 + (4+5ct)S2 + (40u+.-)S + 0.1Z = 0

Parameter plane curves are shown in Figures 5-10 and 5-11.

Lines of K - 0.1, 0.2, 0.3, etc. may be superimposed. 4. \
e Z

If we select K = 0.15 and (similarly to the lead compensator
e

"9. 77
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LAG COMPENSATOR
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Figure 5-10 .

(5+me)Sr Plane Curves for
S + 5+ocS +(4+5a)S 2 + (4cz+f)S + 0.ir3 0
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Figure 5-11

N Parameter Plane Curves for
S 4 + (5+aj)Ss + (4+5a)S2 + (4cc+B)S + 0.12 0
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example) E=0.5 and w =2.0, then a=2.14 while B=12.89. This
n

produces dominant roots at -1.0 + j1.7.

Let us reconsider the systems for which a lead compensator

and a lag compensator were designed. The characteristic

equation as well as the error coefficient each contain three

unknowns (if we assume a numerical value for K ) " We can
e

imbed the error coefficient in the characteristic equation

by direct substitution, thereby eliminating one of the

unknowns. Let us eliminate the gain parameter K - note that
4PK

K e
,. .z

Returning to the characteristic equation:

(P)-24PK: S 4  ) 3  ( 4 5 ) 2 - - )" . " -
S+ (5+P (4+5P)S + (4P+ e)S + 4PK 0

"" e

p ' -
Letting P = c and = $,the characteristic equation becomes:

4-: 32
S + (5+a )S (4+5a )S + (4a +4K e)S + 4K a 0

If a constant value is now chosen for K , say K = 2.0, the
e e

characteristic equation becomes:

S 4 + (5+a)S 3 + (4+5a)S 2 + (4c+8 3 )S + 8a = 0

for which the parameter plane contours are first shown in

Figure 5-12 and are further magnified in Figure 5-13. Now

when any operating point is chosen on the parameter plane

curve(s), the selected (OL,2) pair generates K e=2.0. Of

course, this procedure can be repeated for any choice of K
e
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EMBED ERROR COEFFICIENT (KE=2)

100-.

j75 ------
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Figure 5-12

4 Parameter Plane Curves for

S +(5+o.)S 3 + (4+5c.)S 2 + (40i+83)S + 8a~ 0
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EMBED ERROR COEFFICIENT (KE=2)
Is..6 %
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Figure 5-13 A.

4 Parameter Plare Curves for
S + (5+ca)S3 + (4+5ca)S + (4Oa+8 3)S + 8a' = 0
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On the parameter plane curves let us choose =O5and

w =2.0 for which:

a =6.00= P%

=4.50 = -
..

1-=.33 =Z p

K 8 =36

As a check, K =K-2.0. The roots associated with the
e 4P

selected zeta and omega values are shown to be dominant

using the root-finding algorithm and are:

-1.00 + j1.73
-Dominant Pair

-1.00 - j1.72

-1.63 + JO

-7.37 + jO

Example 5-5

As a final engineering example, consider the system below:

.d

455+ 0)S +5S+ 00 -



For this system, the following specifications are to be met:

1. Set K to the stability limit.

2. Place a dominant root pair within the following region:
0.4<E<0.7, and 2<w<6.

3. Both tachometer and acceleration feedback may be used,
but if possible choose only one.

From the figure the uncompensated system's open loop transfer

function is:

GH = -1= K 2
S(S+10)(S +53+100)

From which, when expanded, the characteristic equation

becomes:

4 3 2
S + 15S + 150S + 1000S + K =0

To determine the value of K at the stability limit the Pouth

array is employed:

1 150 K

15 1000 0

1250 15K 0

1.25xlO6_ -225K 0 0

15K 0 0

874
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Here, the stability limit is seen to be K=5555.5. If both

tachometer and acceleration feedback are used the compensated

system's characteristic equation becomes: 
f.4r.V

A %

S + 15S 3 + (150+5555.5a)S + (1000+5555.5 )S + 5555.5=0

where a=K =Kt and K has been set to the stability limit. .

Parameter plane curves for this system are shown in Figure

5-14.

From these curves, the following analysis can be made.

The origin of the parameter plane corresponds to the roots

of the uncompensated system. Since the ,=0 curve passes "

through the origin, two roots are located on the jw axis of .

the S-plane as was to be expected from the Routh array. The

remaining two roots are also complex and correspond to E=0.8

and w=5.0. It is important to note that when an operating

point involves two different pairs of complex roots, then the

curves for two different values of omega and two different

values of zeta must pass through the point. To determine

which value of omega corresponds to which value of zeta, it

becomes necessary to refer to the program's tabular data

output, which is not included here due to lack of space.

With K =0 the effect of tachometer feedback alone

corresponds to movement of the M point along the 2 axis.

In Figure 5-14 the unstable region is determined by an ;,

inspection of the way the constant zeta curves tend -".

85
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TACHOMETER, ACCELERATION FDBK

E=00.00
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Figure 5-14
Parameter Plane Curves for

S4+ 15S 3 + (150+5555.5ct)S 2 + (1000+5555.53)S + 5555.5 0
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as zeta increases. Since the axis is always in the

unstable region, it is concluded that tachometer feedback

alone cannot stabilize the system. W,

The effect of acceleration feedback alone can be observed

by traveling along the a-axis of Figure 5-14. If K is
a

varied between 0.01 and 0.06, the system will exhibit two

pairs of complex roots with the following ranges of values

for zeta:

0.3<E<0.5 and 0.25< <0.32 '.-::1

If both tachometer and acceleration feedback are used,

it is seen that tachometer feedback will in general cause

the zeta of one pair of roots to increase while the zeta

of the other pair decreases. Acceleration feedback alone

would appear to be the better choice. .-. .,-.

From the set of curves it is determined that with Kt=0 ,

and K =0.012, four complex roots are located with associated
a

values at =0.45, w=4.0, and ,=0.32, w=13.0. Since

(0.45)(4)=t8<<(0.32)(13)=4.15, it is apparent that the roots

at =0.45 and w=4.0 are dominant. The specifications have

been met and the problem is solved. ."-

B. MISCELLANEOUS ASPECTS OF THE PARAMETER PLANE

It can be demonstrated that constant zeta parameter

plane curves of order two through five originate at a point

M N "" .where alpha and beta -, where M, N, and K are

87
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determined by the zero and first power coefficients only. . -.

Intuition can be used to conclude that constant zeta curves

of any order originate at this common point which is -

determined only by the zero and first power coefficients.

An exception is when K=O. In this case the origin point

depends on higher order coefficients and its location will

be obvious given a specific problem. If K is not zero,

the origin is independent of the order of the characteristic

equation.

Inspection of the expressions for alpha and beta indicates

that the shape of the constant zeta curves as omega becomes

larger is primarily determined by the coefficients of higher

power, and in general the curves become more complex and
.

less well behaved as the order of the characteristic

equation increases. For a given characteristic equation,

an increase in complexity can be observed as alpha and beta

appear in more coefficients.

All constant zeta curves tend to plus or minus infinity. -

The relative magnitudes of the coefficients determine whether .'

the limit -is plus or minus infinity. It is therefore

necessary to choose a frequency range of interest before

plotting the curves, thus limiting the analysis to one .-.

"window" of the infinite plane.

Since no stability criteria, either relative or

absolute, has been established for the parameter plane, it

-8
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* is necessary to base the stability analysis on observing

which way the curves tend as omega and zeta are varied.

For this reason it is worthwhile to plot curves for as many

values of zeta, omega, sigma, and if desired, zeta-omega, ..

as are necessary to ascertain the pattern.

89p



ft .ft. : .

t.. -, f,*

VI. CONCLUSIONS

Parameter plane techniques have been applied to the

compensation of linear control systems. General equations

have been derived for the cases of feedback, cascade, and

combination feedback-cascade compensation, to enable one to

place a pair of complex conjugate roots at a specific

location in the S-plane, while simultaneously satisfying

the steady-state accuracy requirements. A dominancy

technique has been introduced whereby once a pair of complex

roots is fixed, the remaining roots of the characteristic

equation can be manipulated to ensure that the specified

roots are dominant.

The impetus for development of a parameter plane program

was to provide the user with a quick, simple means of

obtaining the information available in the analytical

solution to control system compensation, while avoiding the

painstaking labor of trial-and-error analysis inherent in

that technique. Several, practical engineering examples

have been presented to demonstrate the superiority of the

graphical technique. To date, no other package is known to

offer the fully interactive and comprehensive capabilities

of the parameter plane program.

.p

90

.

-f * %• /f'&t9't " /t ~ f t~ P ~ f V~.. -. ~ . .. P**..-.<-



By itself the program allows one to design a control

system compensation model for most systems. However, for

some lightly damped systems containing mechanical resonances,

the amount by which zeta or omega are incremented in the

parameter plane equations may be so large as to not detect

the resonance peaks. This information would be available from

either a root-locus or Bode analysis. For still other

systems, one might be interested in the way the roots of the

characteristic equation extend from the open loop poles and/or

zeros. Since the parameter plane equations are calculated

using only the characteristic equation, no knowledge of open

loop poles or zeros is available. Again, a root-locus method

would reveal this information. Incorporated into one

comprehensive package which includes Bode and root-locus

analyses, the program provides the capability to investigate "5%

the entire gamut of linear control system architecture.

A basis for further investigation involves plotting the

parameter plane contours for systems that are non-linear

in the alpha and beta terms--i.e., those systems which contain

alpha-beta product terms. Although the recursion technique

used in this text has distinct advantages over the matrix

approach for the linear case, as pointed out earlier, the

matrix technique would be the method of choice for the non-

linear case.
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PARAMETER PLANE PROGRAM -

SUBROUTINE LPARAM
DIMENSION A(350), B(350),

X AG(350), BG(350), AJ(100), BJ(100), CJ(100),
X ZETA(iDO), SIGMA(100), W(100), ZN(100)

C IIILASSIGNMENTS
CHARACTER*4 SCHARI''S '/,YES/'Y '/,NOO/IN '/,BLANK/' '/

x ENCHAR/'E '/,NNCHAR/ 'WN'/,NDCHAR/ 'ND'/, NOCHAR/ 'NO'/,
X AJCHAR/'AJ'/,BJCHAR/'BJ'/,CJCHAR/'CJ'/,NSCHAR/'NS'/,
X NZCHAR/'NZ'/,ZNCHAR/ 'ZW'/,NWCHAR/'NN'/,PRCHAR/'PR'/,
x NCCHAR/'NC'/,TICHAR/ITI'/
CHARACTER*4 TABLE, GRAPH, CHANGE, REPLY, OPT, LABEL(9)
COMMON /SAVE/ LABEL, WN, ND, N02, NC, CJ, AJ, BJ,

X NZ, ZETA, NS, SIGMA, NW, N, NZN, ZN,
X XMIN, XMAX, YMIN, YMAX

C
C DATA ENTRY FROM FILE OR CONSOLE?

*100 MINMAX 1
GRD =0.
CHANGE =BLANK -

CALL EXCMS('CLRSCRN')
WRITE(6,500) %*

CALL READC (REPLY) '

IF (REPLY .NE. ID') GOTO 101
CALL GETIT
MINMAX =0
GO TO 200

101 CONTINUE
C
C GET CURVE TITLE
102 CONTINUE

CALL EXCMS( 'CLRSCRN')
WRITE(6,501)
CALL READL (LABEL)
CALL ASTER (LABEL,LABEL)
IF ( CHANGE .EQ. TICHAR ) GO TO 200

C
C GET STARTING VALUE OF N

* 103 CONTINUE 02

CALL READR CNN)
IF (WN) 104,104,105

104 NRITE(6,503)
GO TO 103

105 IF C CHANGE .EQ. WNCHAR) GOTO 200
C
C GET THE NUMBER OF DECADES CONSIDERED

-106 CONTINUE
WRITE(6, 504)
CALL READI (ND)
IF C CHANGE .EQ. NDCHAR ) GOTO 200

C GET THE ORDER OF THE CHARACTERISTIC EQN
107 CONTINUE

WRITE(6 ,505)
* CALL READI (N02)
* NC =N02+1

IF (CHANGE .EQ. NOCHAR )GOTO 200
C
C
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C
C GET THE NUMBER OF CONSTANT ZETA CURVES

108 CONTINUE
CALL EXCMS ('CLRSCRN')
WRITE(6,.506) >4A
CALL READI (HZ)
IF (NZ .LT. 1) GOTO 110

* C
*C GET THE VALUES OF ZETA

WRITE(6,507)
DO 110 I= 1,NZ

109 WRITE(6,508)I
CALL READR (ZETA(I))
IF (ZETACI) .LT. 0. .OR. ZETA(I) .GT. 1.) WRITE(6,509) LI
IF (ZETA(I) .LT. 0. .OR. ZETA(I) .GT. 1.) GO TO 109

110 CONTINUE
IF ( CHANGE.EQ. NZCHAR ) GOTO 200 -

C
C GET THE NUMBER OF CONSTANT SIGMA CURVES
Ill CONTINUE

CALL EXCMS ('CLRSCRN')
WJRITE(6, 510)
CALL READI (NS)
IF (NS .LT. 1) GOTO 113

C
C GET THE VALUES OF SIGMA

DO 113 I 1,NS
112 WRITE(6,511) I

CALL READR (SIGMA(I))
IF (SIGMA(I) .LT. 0.) WRITE (6,512)
IF (SIGMA(I) .LT. 0.) GO TO 112

113 CONTINUE

IF ( CHANGE .EQ. NSCHAR ) GOTO 200

C GET THE NUMBER OF CONSTANT WN CURVES
11(4 CONTINUE

CALL EXCMS ('CLRSCRN')
WRITE(6,513)
CALL READI (NW)
IF (NW .LT. 1) GOTO 116

C
C GET THE WN VALUES

WNMAX =WN*10**ND
DO 116 I 1,NW

115 WRITE(6,514) I
CALL READR (W(I))
IF (W(I) .LT. WN .OR. W(I) .GT. WNMAX) WRITE (6,515) WN,WNMAX
IF (W(I) .LT. N .OR. W(I) .GT. WNMAX) GO TO 115

116 CONTINUE
IF ( CHANGE .EQ. NWCHAR ) GOTO 200

C * .

C GET THE NUMBER OF CONSTANT ZETA*WN CURVES
117 CONTINUE

CALL EXCMS ('CLRSCRN')
WRITE(6 ,516)
CALL READI (NZW)
IF (NZW .LT. 1) GOTO 119

C
C GET THE Z*WN VALUES

DO 119 I 1,NZW
118 WRITE(6,517) I

CALL READR (ZW(I))
IF (ZW(I) .LE. 0.) WRITE (6,518)
IF (ZW(I) .LE. 0.) GO TO 118

119 CONTINUE

C IF CCHANGE .EQ. ZWCHAR )GOTO 200
C
C
C
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C GET CONSTANT COEFFICIENTS
120 CONTINUE

CALL EXCMS ('CLRSCRN')
WRITE(6,519)
DO 121 I = NC,1,-1

II = I-1 ,,
WRITE(6,520) II,I
CALL READR (CJ(I))

121 CONTINUE
IF ( CHANGE .EQ. CJCHAR ) OTO 200

C
C GET ALPHA COEFFICIENTS122 CONTINUE D

CALL EXCMS ('CLRSCRN')
WRITE(6,521)
DO 1Z3 I = NC,1,-"II = I-I "L

WRITE(6,522) II,I
CALL READR (AJ(I))

123 CONTINUE
IF (CHANGE .EQ. AJCHAR ) GOTO 200

C
C GET BETA COEFFICIENTS
124 CONTINUE

CALL EXCMS ('CLRSCRN')
WRITE(6,523)
DO 125 I = NC,1,--

II = I-I . .

WRITE(6,524) II,I
CALL READR (BJ(I))

125 CONTINUE
C
c
C
Cc
C'"C $"

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

*% C .

C
C
C
C
C

.. ___ __ * >'- ' 3'- ~ ~ ~ 5~ . I\-

c -

r' C
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* C
*C REVIEW ENTRIES

200 CONTINUE
CALL EXCMS ('CLRSCRN')

WRITE(6, 525)
CALL READC (REPLY)
IF (REPLY .NE. YES) GOTO 209 fo

CALL EXCMS ('CLRSCRN') %

NRITE(6,526)
WRITE(6,527) (LABELCI, I=1, 9)
WRITE (6,528)
WRITE(6,529) ND,N02,NZ,NS,NW,NZW
WRITE(6,530) WN
WRITE(6, 531)
IF (NZ .LT. 1) GOTO 201
WRITE(6,532) (ZETA(M),M1l,NZ)
GOTO 202

201 WRITE(6,533)
*202 CONTINUE

WRITEC6,534)
IF (NS .LT. 1) GuTO 203
WRITE(6,532) (SIGIA(M),M=1,NS)
GOTO 204

*203 WRITE(6,533)
* 204. CONTINUE

WRITE(6 ,535)
IF (NW .LT. 1) GOTO 205

WRITE(6,532) (W(f),M=1,NW)
GOTO 206

205 WRITE(6,533)
206 CONTINUE

WRITE(6 ,536)
IF (NZN .LT. 1) GOTO 207
WRITE(6,532) (ZW(M),M=1,NZW)
GOTO 208

*207 WRITE(6,533)
208 CONTINUE

WRITE (6,576)
CALL EXCMS('CLRSCRNV) -
WRITE(6, 537)
WRITE(6,532) (CJ(N),N=NC,1,-1)
WRITE(6 ,538)

WRITE(6, 539)
WRITE(6,532) (BJ(N),N=NC,1,-1)
WRITE(6, 540)
WRITE(6,5.1) XtIIN, XIIAX, YtIIN, YMAX

209 CONTINUE
WRITE(6,542)
CALL READC (CHANGE)
IF (CHANGE .NE. YES) GOTO 210

C
C
C
C
C
C '**

C
C
C
C 

- L

C
C
C

* C
* C

C
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CHANGE ROUTINE

C
C

CALL EXCMS ('CLRSCRN')
WRITE(6,543)
CALL READC (CHANGE)
IF (CHANGE .EQ. TICHAR) GOTO 102
IF (CHANGE .EQ. WNCHAR) GOTO 103
IF (CHANGE .EQ. NDCHAR) GOTO 106
IF (CHANGE .EQ. NOCHAR) GOTO 107
IF (CHANGE .EQ. NZCHAR) GOTO 108
IF (CHANGE .EQ. NSCHAR) GOTO 111
IF (CHANGE .EQ. NWCHAR) GOTO 114
IF (CHANGE .EQ. ZWCHAR) GOTO 117
IF (CHANGE .EQ. CJCHAR) GOTO 120
IF (CHANGE .EQ. AJCHAR) GOTO 122
IF (CHANGE .EQ. BJCHAR) GOTO 124
IF (CHANGE .EQ. ENCHAR) GOTO 405
IF (CHANGE .E. PRCHAR) GOTO 100.
IF (CHANGE .EQ. NCCHAR) GOTO 210
GOTO 209

210 CONTINUE
WRITE(6,544)
CALL READC (TABLE)
WRITE(6,545) "'
CALL READC (GRAPH)

211 IF (NZ) 213,213,212
212 G = (10.**ND)**(1./299.)
213 CONTINUE

Z 1.OE-60
C
C
C
C
C
C

* C
C
C '
C
C
C
C
C

c 4

* C
* C

C
C

* C
C
C
C
C
C
C

* C
SN C

C
C

C ,. .

C
C
C
C
CC

C
C ""
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c
C CONSTANT ZETA PLOTS

30 IF (NZ) 309,309,300""..-,,
300 CALL EXCMS ('CLRSCRN') *

IF (TABLE .EQ. YES .OR. GRAPH .EQ. YES) WRITE (6,546)
C

DO 308 M=I,NZ
IF (TABLE .EQ. YES) WRITE (6,547)
j 0
R 0.
WNA =N 

C
DO 306 L=1,300

D1 = 0.0
D2 = 0.0 .'
Cl = 0.0
C2 = 0.0
BI = 0.0
B2 = 0.0

DO 303 N=1,NC
K = N-1
IF (K) 302,301,302

301 U 0.0
U1 = -1.0

302 U2 = 2.0*ZETA(M)*U-U1
Dl = (-1.0)**K3CJ(N)XWNA* 3KNUI+D1
D2 = (-1.0)**K*CJ(N)*WNAWWK*U+D2
Cl = (-I.O)**K*BJ(N)*NA**K*Ul+C1 ,
C2 = (-1.0)**K*BJ(N)*WNA*K KXU+C2
B1 = (-1.0)WWK*AJ(N)*WNA**K*UI+B1
B2 = (-1.0)**K*AJ(N)*WNA**KU+B2
01 = U
U = U2

303 CONTINUE
C

IF (ABS(B1BC2-B2*C1)-Z) 306,306,304 . -j
304 J J+l

R = R+"
A(J) = (CI*D2-C2*D1)/(Bi3C2-B2*C1)
B(J) = (B2*DI-BI*D2)/(BI*C2-B2*CI) ,

IF (TABLE .NE. YES) GO TO 306
WRITE(6,548) A(J), 8(J), NNA, ZETA(M)
IF (R/10. - J/10) 306,305,306

305 CALL ROOTS (A(J), B(J), AJ, BJ, CJ, N02)
CALL EXCMS('CLRSCRN')
WRITE (6,547)

306 WNA = G*WNA
C .. ,

CALL EXCMS('CLRSCRN')
C

IF (J .GT. 0) GOTO 307
WRITE(6,549)
GOTO 308

C
307 IF (GRAPH .EQ. YES) CALL PLOTD(A,B,J,.FALSE.,

X LABEL, 'ALPHA$', 'BETAS',
x MINMAX,' Z=',ZETA(M),
x XMIN,XMAX,YMIN,YMAX,GRD)

C
IF (GRAPH .EQ. YES) GRD = GRD+i.

C
308 CONTINUE

309 CONTINUE
C ..-.. o

C
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C
C CONSTANT SIGMA PLOTS

IF (NS) 335,335,325
325 CALL EXCMS('CLRSCRN')

IF (TABLE .EQ. YES .OR. GRAPH .EQ. YES) WRITE (6,550)

XINC =(XMAX - XMIN)/299.
C YINC =CYMAX - YMIN)/299.

DO 334 M=1,NS . J
XPT = XMIN
YPT = YMIN
DD = CJ(l)
CC =BJ(1)
BB AJ(l)

R 0.

C
DO 326 N=2,NC

K =N-1
DUMMY5=SIGMA(M)N*3K
DOD (-1.0)**K*CJ(N)*DUMMY5+DD
CC = (-1.0)**K*BJ(N)*DUMMY5+CC
BB (-1.0)**K*AJ(N)*DUMMY5+BB

326 CONTINUE
C 5-.

IF (CC .EQ. 0. .AND. BB .EQ. 0.) GOTO 334
IF (CC) 327,327,330

327 DO 329 L=1,300
j= J+1
R R+l.
A(J) = XPT
B(J) =(-BB*A(J)-DD)/CC

IF (TABLE .NE. YES) GOTO 329
WRITEC6,552) ACJ), B(J), SIGMACH)
IF (R/10. - J/10) 329,328,329

328 CALL ROOTS (A(J), B(J), AJ,. BJ, CJ, N02)
*CALL EXCMS ('CLRSCRN')

WRITE(6,550) *.v'

329 XPT =XPT + XINC
GO TO 333

* C
330 DO 332 L=1,300

J J+1
R R+l.
B(J) =YPT
A(J) =(-CC*B(J)-DD)/BB

IF (TABLE .NE. YES) GOTO 332
WRITE(6,552) A(J), B(J), SIGMA(tI)
IF (R/10. - J/10) 332,331,332 '..

331 CALL ROOTS (AUJ), B(J), AJ, BJ, CJ, N02)
CALL EXCMS ('CLRSCRN')
WRITEC6 ,550)

332 YPT = YPT + XINC

333 CALL EXCMSC'CLRSCRN') 5

IF (GRAPH .EQ. YES) CALL PLOTD(A,B,J,.FALSE.,
X LABEL, 'ALPHAS','BETAS',
X MINMAX,' Sz$',SIGMA(M),

C XMIN,XMAX,YMIN,YMAXGRD)

IF (GRAPH .EQ. YES) GRO GRD+l.Ji
C
334 CONTINUE

C
335 CONTINUE

C
C
C
C_
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C CONSTANT ZETA-OMEGA PLOTS
IF (NZN) 359,359,350

350 CALL EXCMS('CLRSCRN') ~.
CIF (TABLE .EQ. YES .OR. GRAPH .EQ. YES) WRITE (6,553)

XWN WN
C

DO 358 M=1,NZW

IF (TABLE .EQ. YES) WRITE (6,554)
j =0
R f 0.
AZETA l./300.

C
DO 356 L=1,300

XWN =ZW(M)/AZETA
Dl = 0.0
D2 =0.0
Cl = 0.0
C2 =0.0
Bi 1- 0.0
B 2 = 0.0

C
DO 353 N1I,NC

K aN-1
IF MK 352,351,352 *

351 Qi 0.0
Q =-1.0/XWNN*2

352 D2 = CJ(N)*Q1+D2
C2 =BJ(N)*Ql+C2
B2 = AJ(N)*Ql+B2
Dl = CJ(N)3(Q+Dl
Cl = BJ(N)*Q+Cl
Bi = AJ(N)*Q+B1
Q2 = -2.03EZW(M)3Ql-XWN**2*Q

353 Ql =Q2
C

IF (ABS(B13(C2-B2*Cl)-Z) 350,356,354
354 J J+l

* R =R+l.
A(J) =(Cl*D2-C2*EDl)/(B1*C2-B2*ECl)
B(J) c (B2*Dl-Bl*D2)/(Bl3C2-B2ECl)

C IF (TABLE .NE. YES) GO TO 356

WRITE(6,552) A(J), B(J), ZW(t4)
IF (R/10. -J/10) 356,355,356

355CALL ROOTS (AJ), B(J), AJ, BJ, CJ, N02)
CALL EXCMS(SCLRSCRN')
WRITE (6,554)

356 AZETA =AZETA+(l./300.)
* C

CALL EXCMS('CLRSCRN')
C

IF (J .GT. 0) GOTO 357
* WRITE(6,549)

GOTO 358
C
357 IF (GRAPH .EQ. YES) CALL PLOTD(A,B,J,.FALSE.,

x LABEL, 'ALPHAS','BETA$',
X MINMAX,'ZW=*',ZW(M),

x XMIN,XMAX,YMIN,YMAX,GRD)

IF (GRAPH .EQ. YES) GRD GRD+1.
C
358 CONTINUE

C
359 CONTINUE

C
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C CONSTANT OMEGA PLOTS . a

375 IF (NW) 385,385,376
376 CALL EXCMS('CLRSCRN')

IF (TABLE .EQ. YES *OR. GRAPH .EQ. YES) WRITE (6,555)

DO 384 M=1,NW
IF (TABLE *EQ. YES) WRITE (6,547)

R :0.
AZETA -0.0 ~-

C
DO 382 L=1,300

Ill 0.0
D2 = 0.0
Cl = 0.0
C2 = 0.0
BI = 0.0
B2 = 0.0

C
DO 379 N1I,NC

K = N-1
IF (K) 378,377,378

377 U 0.0
Ul -1.

378 U2 = 2.O3EAZETA3EU-Ul
Dl = (-1.0)**K*CJ(N)*W(M)**K*Ul+Dl
D2 =(-1.0) *K*CJ(N)*W(M)**K3U+D2
Cl = (-1.0)*NK3BJ(N)XW(M)*K*EUI+Cl
C2 = (-1.)KBJ(N)W(M)**3KEU+C2
Bi = (-1.0)*KAJ(N)*W(M)*OEKUl+Bl
B2 = (-1.0)KAJ(N)EW(M)(*KU+B2

Ul=U
U U2

379 CONTINUE

IF (ABS(B1*C2-B2*Cl)-Z) 382,382,380
380 J J+1

R :R+l.a
A(J) = (C13*D2-C23D)/(Bl*C2-B2*Cl)
B(J) =(B23Dl-Bl*D2)/(Bl*C2-B2*Cl)

IF (TABLE .NE. YES) GO TO 382
WRITE(6,548) A(J), B(J), W(M), AZETA
IF (R/10. - J/10) 382,381,382

381 CALL ROOTS (A(J), B(J), AJ, BJ, CJ, N02)
CALL EXCMS('CLRSCRN')
WRITE (6,547)

382 AZETA =AZETA+(l./299.)
CALL EXCMS( 'CLRSCRN')

IF (J .GT. 0) GOTO 383
WRITE(6,549)
GOTO 384

C
383 IF (GRAPH .EQ. YES) CALL PLOTD(A,B,J,.FALSE.,

X LABEL, 'ALPHA*','BETA$', .

x MINMAX,' W=V,W(M), .
x XMIN,XMAX,YMIN,YMAX,GRD)

C3 84  CONTINUE

C
385 CONTINUE

C
C
C
C
CAA
C
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IF (GRAPH .EQ. YES) CALL PLOTD(0.,O.,0.,.TRUE.,

bX 0.,' $',-9.7531,
x 0. ,0.,0. ,G.,GRD)

IF (GRAPH .EQ. YES) ORD =GRD+1.
GRD 0.

400 CALL EXCMS('CLRSCRN')
IF (OPT .EQ. YES) CALL DONEPI
IF (OPT .EQ. YES) STOP
WRITEC6,557)
WRITE(6,556)
WRITE(6,557)
WRITE(6,558)
WRITE(6,559)
WRITE(6, 560)
WRITEC6,561)
WRITE(6,562)
WRITE(6,563)
WRITE(6,557)
CALL READI (IANS)

IF (lANS .GT. 6 .OR. IANS .LT. 1) GOTO 400
G0 TO (100, 404, 401, 402, 403, 405) IANS

C
:rC ROOT FINDER OPTION

401 CALL EXCMS('CLRSCRN')
WRITE(6,564)
WRITE(6,565)
CALL READR (ALPHA) -
WRITE(6,566)
CALL READR (BETA)
CALL ROOTS (ALPHA, BETA, AJ, BJ, CJ, N02)
GO TO 400

C
C SAVE OPTION
402 CALL SAVIT

GO TO 400
CIC CREATE DISSPLA METAFILE OPTION
403 CALL EXCMS('CLRSCRN')

WRITE(6, 567)
WRITE(6,568)
WRITE(6,569)
CALL READC (OPT)
IF (OPT .NE. YES) GOTO 400

CALL EXCMS('CLRSCRN')
WRITE(6,570)
CALL DONEPI

C COMPRS SUBROUTINE TO LET DONEPI FINISH
CALL META

C GO TO 211

C 40 RT(,7)SAME PROBLEM OPTION

CALL READI (MINMAX)
IF (MINMAX .EQ. 1) GO TO 200
CALL EXCMS('CLRSCRN')

WRITE(6,572)..
CALL READR CXMIN)
WRITE(6, 573)
CALL READR (XMAX)
WRITE(6,574)
CALL READR (YMIN)
WRITE(6,575)
CALL READR (YMAX)

GO TO 200
405 CONTINUE

RETURN
C
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C
C
C
C
C
C
C

C FORMATS STATEMENTS
500 FORMAT(5X,FTHIS IS THE INTERACTIVE PARAMETER PLANE PROGRAM...

X 5X,'THE USER WILL BE PROMPTED FOR VARIOUS INPUTS.',////,
x 5X,'WILL YOU BE ENTERING DATA FROM A CONSOLE OR DATAFILE?', . '

X /,15X,"D" OR "C"')
501 FORMAT(///,' ENTER TITLE TO APPEAR FOR THIS FAMILY OF CURVES')
502 FORMAT(/,1X,'WHAT IS THE STARTING VALUE OF OMEGAN (WN>O.O)?')
503 FORMAT(/,1X,'WN MUST BE GREATER THAN ZERO - TRY AGAIN')
504 FORMAT(/,1X,'HOW MANY DECADES PAST WN ARE DESIRED? (ND)')
505 FORMAT(/,' WHAT IS THE ORDER OF THE CHARACTERISTIC EQUATION?(NO)I)
506 FORMAT(/,1X,'HOW MANY CONSTANT ZETA CURVES ARE DESIRED? (NZ)')
507 FORMAT(/,' ENTER THE VALUES OF ZETA TO BE USED IN COMPUTATION ...'P)
508 FORMAT(5X,'ZETA(',I2,')=?1
509 FORMAT(5X,'ZETA MUST LIE BETWEEN 0 AND 1, INCLUSIVE - TRY AGAIN')
510 FORMAT(/,' HOW MANY CONSTANT SIGMA (REAL ROOT) CURVES ARE DESIRED?

X (NS)')
511 FORMAT(5X,'SIGMA(',I2,') 7'
512 FORMAT(5X,'NEGATIVE SIGMA MEANS POSITIVE REAL ROOT - TRY ANOTHER')
513 FORMAT(/,1X,'HOW MANY CONSTANT WN CURVES ARE DESIRED? (NW)')
514 FORMAT(5X,'W(',I2,')= 1dl.0
515 FORMAT (SX,'WN NOT WITHIN PLOTTABLE RANGE',

x /,5X,'YOUR USABLE RANGE IS'
X /,lOX,F10.2,' TO ',F1O.2)

516 FORMAT(/,lX,'HOW MANY CONSTANT Z*WN CURVES ARE DESIRED? (NZW)')
517 FORMAT(5X,'ZW(',I2,')
518 FORMAT(5X,'NON-POSITIVE Z-WN MEANS POSITIVE ROOT -TRY ANOTHER')
519 FORMAT(/,1X,'ENTER THE CONSTANT COEFFICIENTS ...'1)
520 FORMAT(5X,'---S**',I2,'--- CJ(',12,')
521 FORMAT(/,lX,'ENTER THE ALPHA COEFFICIENTS ...'1)
522 FORMAT(5X,'---S**',12,' --- AJ(',I2,')=?,
523 FORMAT(/,lX,'ENTER THE BETA COEFFICIENTS..')
524 FORMAT(5X,'---S**',12,1'--- BJ(',I2,')
525 FORMAT(/,' WANT TO REVIEW YOUR ENTRIES BEFORE RUNNING? (Y/N)')
526 FORMAT (1,10W, GRAPH TITLE')
527 FORMAT (1X,9A4)
528 FORMAT (/,8X,2HND,8X,2HNO,8X,2HNZ,8X,2HNS,8X,2HNW,7X,3HNZW)
529 FORMAT (6110)
530 FORMAT (/,1OX,'INITIAL VALUE OF OMEGA 1,F10.5)
531 FORMAT (/,1OX,' ZETA '

*532 FORMAT (8E10.3)
*533 FORMAT (1X'.....NO VALUE...'1)

534 FORMAT (/,1OX,'SIGMA ')
535 FORMAT (/,1OX,' W ')
536 FORMAT (/,1OX,'ZW ') %.

4537 FORMAT (/,1OX,'CONSTANT COEFFICIENTS IN DECENDING ORDER')
538 FORMAT (/,IOX,'ALPHA COEFFICIENTS IN DECENDING ORDER')
539 FORMAT (/,1OX,'BETA COEFFICIENTS IN DECENDING ORDER')
540 FORMAT (/,1OX,'XMIN XMAX YMIN YMAX')
541 FORMAT (1X,4E10.3)
542 FORMAT(/,' WANT TO MAKE ANY CHANGES? (Y/N)') -

543 FORMAT(/,' WHAT VARIABLE/AREA DO YOU WISH TO CHANGE?',//,
X5X,'TITLE ........ TI OMEGA START..WN # DECADES .... ND',/

C
C
C
C
C
C
C
C
C
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C % /
C
C

C.4

C
C --
C

C 5,ORE ....... NO CNTZT .- ZCNTSGA.S
X5X,'CODER.........NO CONST ZETA .. .N CONT IGA..N,
X5X,'CONST WNM. NW APH CN T Z-WN.. BEATRS.. J,
X5X,'CNT TERMS... .CJ NE A PATEM. .A BETCANTERMS.. NBJI,///
X5X,'END........ NEW PROBLEM CODE NO. CHNE..)C'

544 X,'ETER, TWO DIGIWT CODE...') N HESREN?(/Nt
544 FORMAT(/,' DO YOU WANT TABULAEDDAT ONH TEREN (YN))
545 FORMAT (,10DO YO WANT THETGAPH ONU HE TRMNL')N
546 FORMAT (1,OX,'CONAN ZETA CURVES')A'
547 FORMAT(416.5PABEAOMG)ZT'
548 FORMAT(, UE1TLTETITINACOPEEGRP5ANO)EO

549 ORMT(/'DET LT ETITOS ACMLT RPHCNO E
55 TPURMT') ,0XtOSA IM CRE'

550 FORMAT (1H,1X,'ONSA T SIGMA CURVES')
551 FORMAT 0E,16.5)PABEASIM'
552 FORMAT (3E16.5) ONTN ET-MG CRE'
553 FORMAT (/H,1X,'CONSA T ZEAOEA CUR E) MEA
554 FORMAT (/,1X'LH AN EA ZETA-MEGA'
555 FORMAT (1H,1OPTICON TNT OMEGAN CUVE'
556 FORMAT(5X,I OPTION------------------OPTION----- I')
557 FORMAT(5X,l '--- --- --- ---- --- ----EM

559 FORMAT(5X,'I 2 1 SAME PROBLEMI'
560 FORMAT(5X,'I 3 IROOT FINDER '
561 FORMAT(5X,'I 4 ISAVE DATA '
562 FORMAT(5X,'I 5 ISAVE GRAPH IN DISSPLA METAFILE 1')
563 FORMAT(5X,'I 6 IRETURN TO MAIN MENU '
564 FORMAT(5X,'ENTER AN ALPHA-BETA PAIR, AND THE ROOTS OF YOUR 'I

X 5X,'SYSTEMS CHARACTERISTIC EQUATION WILL BE RETURNED '
565 FORMAT(///,5X,'ENTER THE ALPHA VALUEI566 FORMATC/,5X,'ENTER THE BETA VALUE
567 FORMAT(5X,'YOU NOW HAVE THE OPTION OF STORING THE LAST SET OF ,

X 5X,'CURVES IN A DISSPLA METAFILE. THIS ALLOWS RETRIEVAL"/,
X 5X,'OF DATA AT A LATER TIME FOR ROUTING TO ANY OF',
X SX,'SEVERAL OUTPUT DEVICES (TEK618, 3800 LASER PRINTER, "

X 5X,'VERSATEC PLOTTER, ETC.) '/
568 FORMAT(5X,'IF YOU CHOOSE THIS OPTION, THE PROGRAM MUST BE'I

X 5X,'TERMINATED - THIS CANNOT BE AVOIDED WITHOUT'I

56 OMT//,XIOYUWISH TO USE THIS OPTION? I

50 FORMAT(/////,5X,'IF YOU WISH GRAPHIC OUTPUT, TYPE: 1
X 15X,'"DISSPOP" '
X 5X,'AND FOLLOW THE INSTRUCTIONS ...

571 FORMAT (///,' AUTOSCALE OR USER-DEFINED LIMITS FOR CURVES?',
X/,' 1=AUTOSCALE; O=USER-DEFINED')

572 FORMAT /I'INPUT MINIMUM VALUE FOR X (X-MIN)')
* 573 FORMAT (/'INPUT MAXIMUM VALUE FOR X (X-MAX)')
* 574 FORMAT (I'INPUT MINIMUM VALUE FOR Y (Y-MIN)')
* 575 FORMAT C''INPUT MAXIMUM VALUE FOR Y (Y-MAX)')

576 FORMAT C////////
END

C ,
C
C

* C
C
C
C
C
C
C
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C

C SUBROUTINE PLOTD -- GRAPHS WILL BE PRODUCED ON UPRIGHT 11 X 14
C PAGE WITH 9 INCH AXES. IF USER SELECTS 'AUTOSCALE' FEATURE,
C SUBROUTINE PLDOO (INTERNAL TO PLOTD) FINDS MIN AND MAX FOR EACH
C AXIS AND SCALES ACCORDINGLY. FORMAT'
C
C CALL PLOTD(XDATA, YDATA, NNPTS, EJECT, LABEL, XLABEL, YLABEL, =
C X MINMAX, CRVTTL, CRVNUM, XMIN, XMAX, YMIN, YMAX) =

C WHERE:
C A '
C XDATA IS A REAL*4 ARRAY DIMENSIONED AT LEAST INNPTSI - -e _
C CONTAINING THE*X ORDINATE VALUES,
C
C YDATA IS A REAL*4 ARRAY DIMENSIONED AT LEAST INNPTSI =
C CONTAINING THE Y ORDINATE VALUES,
C
C NNPTS IS AN INTEGERN4 SCALAR DESIGNATING THE NUMBER OF
C POINTS TO BE PLOTTED. THE NUMBER OF POINTS IS =
C ABS(NNPTS). NNPTS<O MEANS PLOT POINTS ONLY. -

C
C EJECT IS A LOGICAL*4 VARIABLE OR CONSTANT INDICATING =
C WHETHER A PAGE EJECT IS REQUIRED FOLLOWING THE
C CURRENT CURVE. THIS ALLOWS MULTIPLE CURVES ON ONE
C SET OF EXES. PAGE EJECT WILL OCCUR FOR NEXT GRAPH
C AFTER EJECT HAS BEEN SET TO .TRUE.

* C
C LABEL IS A QUOTED LITERAL OR HOLLERITH STRING OR ARRAY =
C CONTAINING THE INTENDED LABEL FOR THE GRAPH. THE =
C MAXIMUM ALLOWABLE LENGTH (INCLUDING '$' CHARACTER) '.
C IS 32 CHARACTERS.
C
C XLABEL IS A QUOTED LITERAL OR HOLLERITH STRING OR ARRAY
C CONTAINING THE INTENDED LABEL OF THE X-AXIS OF THE =

d C GRAPH. IN THIS PROGRAM, XLABEL IS ALWAYS 'ALPHA'. =

C
C YLABEL IS A QUOTED LITERAL OR HOLLERITH STRING OR ARRAY =
C CONTAINING THE INTENDED LABEL OF THE Y-AXIS OF THE =
C GRAPH. IN THIS PROGRAM, YLABEL IS ALWAYS 'BETA'.
C
C MINMAX IS A PARAMETER THAT DETERMINES WHETHER THE MINIMUM = .,
C AND MAXIMUM VALUES FOR THE AXES ARE TO BE ASSIGNED =
C BY THE USER, OR WHETHER THEY WILL BE 'AUTOSCALED'. =
C
C CRVTTL IS A QUOTED LITERAL OR HOLLERITH STRING OR ARRAY =
C AND TERMINATED BY A '$' CHARACTER SPECIFYING THE =
C INTENDED NAME WHICH LABELS AN INDIVIDUAL CURVE.
C

' C CRVNUM IS A REAL VARIABLE OR CONSTANT THAT SPECIFIES THE =
C VALUE TO BE CONCATENATED ONTO THE END OF 'CRVTTL'. =

C FOR EXAMPLE, IF THIS CURVE REPRESENTS 'ZETA = 0.5' =
C THEN CRVTTL = 'Z=$', WHILE CRVNUM = 0.5.

C
Jc C

C
SUBROUTINE PLOTD(XDATA, YDATA, NNPTS, EJECT, LABEL, XLABEL,

X YLABEL, MINMAX, CRVTTL, CRVNUM,
X XMIN, XMAX, YMIN, YMAX,GRD)
REAL*4 XDATA(1), YDATA(1)
REAL*4 XMIN, XMAX, YMIN, YMAX
REAL*4 CRVTTL,CRVNUM
INTEGER*4 NPTS,NNPTS
LOGICAL*4 EJECT
LOGICALI LABEL(l)
LOGICAL l XLABEL(1)
LOGICALE YLABEL(1)

C
LOGICAL*4 INIT /.FALSE./
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C
C
C
C SET THE NUMBER OF POINTS
C

NPTS =IABS(NNPTS)
C
C IF THE ROUTINE HAS BEEN NOT BEEN INITIALIZED (INIT .FALSE.)
C THEN INITIALIZE IT.
C

IF (.NOT. INIT) CALL PLDOO1(XDATA, YDATA, NPTS, LABEL, XLABEL, .

C YLABEL, MINMAX, CRVTTL,CRVNUM,I ~ ~ CMN FRAME THEN PLO AD RORER YMOL
C

FRAMNTHE PLOT ALL FERAERYBL
C

C INDICATE INITIALIZATION IN CASE THIS ROUTINE IS RE-ENTERED
C WITH MULTIPLE CURVES.
C

INIT =.TRUE.

C CALCULATE THE NUMBER OF POINTS TO GIVE ABOUT 5 MARKERS PER
C LINE
C
C TENTATIVELY SET POINTS ONLY, THEN CHECK

NMARK =-1
IF(NNPTS.LE.0)GO TO 10

UC CURVE WANTED, SET MARKERS
IF (MOD(NPTS, 4) .EQ. 1) NMARK =NPTS / 4
IF (MOD(NPTS, 4) .NE. 1) NMARK =NPTS / 3
IF (NMARK -EQ. 0) NMARK 1

10 CONTINUE
C
C
C DRAW THE CURVE
C

XXMAX =-1.0E75
YYMAX =-1.0E75

C
DO 20 I=1,NPTS

IF(XDATA(I) .GT. XMAX .OR. XDATA(I) .LT. XMIN .OR.
x YDATA(I) .GT. YMAX .OR. YDATA(I) .LT. YMIN) GO TO 20

IF(XXMAX .LT. XDATA(I)) J=I
IF(XXMAX .LT. XDATA(I)) XXMAX =XDATA(I)
IF(YYMAX .LT. YDATA(I)) K=I
IF(YYMAX .LT. YDATA(I)) YYMAX =YDATA(I)

20 CONTINUE
C

IF((YMAX-YYMAX) -(XMAX-XXMAX)) 40,30,30
30 L=J

GO TO 50
40 L=K

50 CALL GRACECO.)
CALL DOT
IF (GRD) 60,60,70

60 CALL GRID(1,l)
70 CALL RESET('DASH')

IF (CRVNUM .EQ. -9.7531) GO TO 80
CALL HEIGHT(0.125)
CALL RLMESS(CRVTTL,3,XDATA(L),YDATA(L))
CALL RLREAL(CRVNUM,2,'ABUT','ABUT')
CALL THKCRV(0.015)

80 CALL CURVE(XDATA, YDATA, NPTS, NMARK)
CALL RESET('THKCRV')

C
C IF THIS IS NOT THE LAST (OR ONLY) CURVE ON THIS GRAPH, THEN
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C EXIT. OTHERWISE CLOSE THE PLOT AND TURN OFF INITIALIZATION
C FLAG.
C

IF (.NOT. EJECT) RETURN

C END OF THIS PLOT
C

CALL ENDPL(0)
INIT =.FALSE.
RETURN
END

C
C

SUBROUTINE PLDOO1(XDATA, YDATA, NPTS, LABEL, XLABEL,
X YLABEL, MINMAX, CRVTTL, CRVNUM,
X XMIN, XMAX, YMIN, YMAX, GRD)

C
C THIS SUBROUTINE DOES THE INITIALIZING.
C

R EA L * XDATA(NPTS)
REAL*4 YDATA(NPTS)
INTEGER*4' NPTS
LOGICAL~l LABEL~l)
LOGICALE1 XLABEL(l)
LOGICAI~l YLABEL(l)

C
C

REAL*4 XMIN
REAL*4 XMAX
REAL*4 YMIN
REAL3*4 YMAX

c C
C INITIALIZE DISSPLA
C

CALL PLD009
CALL HEADIN(LABEL, 100, 2., 1)
CALL XNAME(XLABEL, 100)
CALL YNAME(YLABEL, 100)

C
C
C EXTRACT MINIMA AND MAXIMA

* C
IF (MINMAX .NE. 1) GO TO 90
CALL PLDO1O(XDATA, NPTS, XMIN. XMAX)
CALL PLDO1O(YDATA, NPTS, YMIN, YMAX)

C
C CALL THE LINEAR-LINEAR INITIALIZING ROUTINE
C

90 CALL PLD011 (XMIN,XMAX,YMIN,YMAX)
RETURN
END

C

SUBROUTINE PLD009
C

*C THIS SUBROUTINE ESTABLISHES THE PARAMETERS FOR DISSPLA.
C
C NOTE THAT IT IS THE USER'S RESPONSIBILITY TO NOMINATE THE

*C GRAPHIC DEVICE.
C

CALL NOCHEK
CALL NOBRUR
CALL PAGE(14.,14.)
CALL PHYSOR(2.,.75)

C
C GO TO LEVEL 2.
C

CALL AREA2D(9.,.9.)
C
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C LETTERING IS DUPLX WITH UPPER CASE ONLY.
C

CALL DUPLX
CALL BASALF('STANDARD')

C INTEGER (OR ROUNDED) AXES WITH Y AXIS LABELLING AT 0 DEGREES.
c

CALL INTAXS
CALL YAXANG(O.)
RETURN
END

C
C

SUBROUTINE PLDOIO(V, N, MIN, MAX)
C
C THIS SUBROUTINE SCANS A VECTOR FOR MAXIMUM AND MINIMUM
C ,
C INPUT PARAMETERS:
C
C V DATA VECTOR (REAL)
C N NUMBER OF POINTS IN VECTOR V (INTEGER) -
C
C OUTPUT PARAMETERS:
C
C MIN VECTOR ORIGIN (REAL)
C MAX VECTOR MAXIMUM (REAL)

REAL*4 V(N)
INTEGER*4 N
REALM MIN
REAL*4 MAX

C
C INITIALIZE THE MAXIMA AND MINIMA
C

MIN = 1.0E75 ..
MAX = -1.0E75

C
C FIND MAXIMUM AND MINIMUM OF VECTOR V
C

DO 100 I = 1, N
IF (MIN .GT. V(I)) MIN = V(I)
IF (MAX .LT. V(I)) MAX = V(I)

100 CONTINUE
RETURN
END

C
* C

SUBROUTINE PLDOl1 CXMIN,XMAX,YMIN,YMAX)
C
C THIS SUBROUTINE SETS UP DISSPLA FOR A LINEAR-LINEAR AXIS PLOT. .',
C

REAL*4 XMIN
REAL'. XMAX
REAL*4 YMIN
REAL*4 YMAX

C A SIMPLE CALL TO GRAF WILL DO IT... -.. ..
C

CALL HEIGHT(O.175) -.
CALL GRAF(XMIN, 'SCALE', XMAX, YMIN, 'SCALE', YMAX)
RETURN ." ,-
END

Cc
C *' J
C %P%'
C

C

Cc
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c

C SUBROUTINE ROOTS ( ALCUAT ETS OF THECJ N0RDREQATO

INTEGERN4 N02, NN, NNN, NNNN
REAL*4 ALPHA, BETA, AJ(100), BJ(100), CJ(100)
REAL*8 COEF(100), ROOTMY(100)
WRITE(6 ,40)
NN = N02+1___
NNNN = N02
DO 10 I=1,NN
NNN = NN+1-I

10 COEF(NNN) = CJ(I) + (ALPHA * AJ(I)) + (BETA BJ(I))
CALL ZPOLR (COEF,NOZ,ROOTMY,IER)
WRITE (6,50)
DO 20 1=1,NNNN

III II1-1
20 WRITE (6,60) ROOTt4Y(III), ROOTMY(II)

WRITE (6,30)
30 FORMAT(////////////////////)
40 FORMAT(/20X,' ROOTS FOR ABOVE ALPHA, BETA')
50 FORMAT(21X,' REAL PART IMAG PART')
60 FORMAT(21X,E10.4,6X,E1O.4)

RETURN

C END
C

C
C SUBROUTINE SAVIT -- SAVES DATA IN FN FT FM =INAME DATA Al,
C WHERE INAME IS THE USER'S CHOICE.

C
C

SUBROUTINE SAVIT
COMMON /SAVE/ LABEL, WN, ND, N02, NC, CJ, AJ, BJ,

X NZ, ZETA, NS, SIGMA, NW, W, NZW, ZN,
X XMIN, XMAX, YMIN, YMAX
REAL3E4 WN, CJ(100), AJ(100), BJ(100), XMIN, XMAX, YMIN, YMAX
REALM'. ZETA(100), SIGMA(l00), W000O), ZW(lOO)
INTEGER ND, N02, NC, NZ, NS, NW, NZW
CHARACTER*4 LABEL(9), INAME(2)
WRITE(6, 10)
READ(5,20) (INAME(I), I=1,2)
CALL FRTCMS('FILEDEF ','02 ','DISK ',INAME,IDATA ')
WRITE(2,30) (LABEL(I, I11, 9)
WRITE(2,*) WN
WRITE(2,*) ND, N02, NC, NZ, NS, NW, NZW
WRITE(Z,*) (CJ(J), J1I, NC)
WRITE(2,*) (AJ(J), J1l, NC)
WRITE(2,*) (BJ(J), J1l, NC)
WRITE(2,*) (ZETA(M), M1l, NZ)
WRITE(2,3() (SIGMA(M), M=I, NS)
WRITE(2,*) (W(M), M1l, NW)
WRITE(2,31) (ZW(M), M1l, NZW)
WRITE(2,*) XMIN, XMAX, YMIN, YMAX

10 FORMAT(5X,TUNDER WHAT NAME DO YOU WANT TO SAVE THE DATA?',/,
X 5X,'(8 CHARACTERS MAX)')

20 FORMAT(2A4)___
30 FORMAT(9A4)

END FILE 02
REWIND 02 h

RET URN
END

C
C
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C

C SUBROUTINE GETIT -- RETRIEVES DATA FROM FN FT FM =INAME DATA Al,
C WHERE INAME IS THE USER'S CHOICE. -

C
C
C

.4 SUBROUTINE GETIT
COMMON /SAVE/ LABEL, N, ND, NO2, NC, CJ, AJ, BJ,
X HZ, ZETA, NS, SIGMA, NW, W, NZN, ZN,
X XMIN, XMAX, YMIN, YMAX
REALK4 NN, CJ(l00), AJ(100), BJ(100), XMIN, XMAX, YMIN, YMAX
REAL*4 ZETA(100), SIGMA(l00), W(100), ZN(100)

4 INTEGER ND, N02, NC, HZ, NS, NW, NZW
CHARACTER(4 LABEL(9)
CHARACTERE8 INAME
CHARACTEREZ1 NAME

10 WRITE(6,(.0)
READ(5,50) INANE
NAME = 'STATE '//INAME//' DATA *'
CALL EXCMS(NAME,RC)

IF (RC .EQ. 0) GOTO 20
WRITE(6,30)
GOTO 10

20 CALL FRTCMS('FILEDEF l,'02 ','DISK 1,INAME,'DATA ')
READ(2,60) (LABELCI), 11l, 9)
READ(2,*E) N
READ(2,*) ND, N02, NC, NZ, NS, NW, NZW
READ(2,*) (CJ(J), J1l, NC)
READ(2,*) (AJ(J), J1l, NC)
READ(2,*) (BJ(J), J=1, NC)
READ(2,3E) (ZETA(M), M1l, HZ)
READ(2,3E) (SIGMA(M), M=l, NS)
READ(2,*) (W(M), M1l, NW)
READ(2,3E) (ZW(M), M1l, NZW)
READ(2,*) XMIN, XMAX, YMIN, YMAX

30 FORMAT(5X,'DATA FILE NOT FOUND - TRY ANOTHER')
4.0 FORMAT(5X,'UNDER WHAT NAME IS THE DATAFILE SAVED?

X 5X,'(8 CHARACTERS MAX)')
50 FORMATC1A8)
60 FORMAT(9A4)

END FILE 02
REWIND 02
RETURN
END

C
C

-v ~C--------------------------------------
C SUBROUTINE ASTER PLACES A S AT THE END OF A CHARACTER STRING
C-------------------------------------------------.'
C
C

SUBROUTINE ASTER(LLIHES,LIHE)
CHARACTER*4 DOLLAR/'$ / LLINES(8), LINE(9)
DO 10 I=1,8

LINE(I)=LLINES(I)
10 CONTINUE

LINE(9)=DOLLAR
RETURN
END

C

C
C
C
C

S. C
C
C
C
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*C SUBROUTINE READR -- INTERACTIVELY READS A REAL NUMBER REPLY.
*C IF THE USER INADVERTENTLY ENTERS A NULL STRING

C A WARNING IS ISSUED AND ONE RECOVERY IS ALLOWED.

55~* C SUBROUTINE READR (ANSR)
* REALK4 ANSR

INTEGER COUNTIS
COUNT=O

10 CONTINUE
COUNT=COUNT+1
IF (COUNT.LT.3) GO TO 20
WRITE (5,60)
GO TO 40

20 CONTINUE
READ (5,*,END=30,ERR=30) ANSR

30 RETURN __

30 REWIND 5
WRITE (5,50)
GO TO 10

40 CONTINUE
STOP..

50 FORMAT (iX,' WARNING: NULL STRINGS ARE NOT ALLOWED, ENTER A NUMER
XICAL VALUE.')

60 FORMAT (///,5X,' PROGRAM TERMINATION - TWO NULL STRINGS ENTERED!')
END

* C

C SUBROUTINE READI -- INTERACTIVELY READS AN INTEGER REPLY.
C IF THE USER INADVERTENTLY ENTERS A NULL STRING OR NEGATIVE VALUE
C A WARNING IS ISSUED AND ONE RECOVERY IS ALLOWED.

C
C

c

SUBROUTINE READI (IANS)
INTEGER COUNTIANS
COUNT=O

10 CONTINUE
COUNT=COUNT+1
IF (COUNT.LT.3) GO TO 20
WRITE (5,70)
GO TO 50

20 CONTINUE
READ (5,*,END=4O,ERR=40) IANS
IF ClANS) 40,30,30

30 CONTINUE
RETURN

40 REWIND 5
WRITE (5,60)
GO TO 10

50 CONTINUE
STOP

60 FORMAT (IX,' WARNING: IMPROPER DATA ENTRY! ENTER A POSITIVE INTEG
XER.')

70 FORMAT (///,5X,' PROGRAM TERMINATION -2 IMPROPER DATA ENTRIES!')
END

C
C

* C "''

C
C
C
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C SUBROUTINE READC -- INTERACTIVELY READS A CHAR STRING REPLY.
C ('YES' OR 'NO'). IF THE USER INADVERTENTLY ENTERS A NULL STRING
C A WARNING IS ISSUED AND ONE RECOVERY IS ALLOWED.

C

SUBROUTINE READC (CANS)
INTEGER COUNT
CHARACTERN4 CANS
COUNT=O

10 CONTINUE
COUNT=COUNT+.
IF (COUNT.LT.3) GO TO 20
WRITE (5,60)

-, GO TO 40
20 CONTINUE

REWIND 5
READ (5,70,END=3O,ERR=3O) CANS
RETURN

30 REWIND 5
WRITE (5,50)
SGOTO lO

40 CONrINUE
STOP

50 FORMAT (IX,' WARNING: NULL STRINGS ARE NOT ALLOWED 1)
60 FORMAT (///,5X,' PROGRAM TERMINATION - TWO NULL STRINGS ENTERED!')
70 FORMAT (A2)

END
C
C

C SUBROUTINE READL -- INTERACTIVELY READS A STRING OF CHARACTERS. =
C IF THE USER INADVERTENTLY ENTERS A NULL STRING
C A WARNING IS ISSUED AND ONE RECOVERY IS ALLOWED.

C
C

SUBROUTINE READL(LLINES)
INTEGER COUNT, I, NIX
CHARACTER*4 BBLANK/' '/, LLINES(8)
DO 10 I=1,8

LLINES(I) = BBLANK
10 CONTINUE

COUNT=O
20 COUNT=COUNT+"

IF(COUNT.LT.3) GO TO 30
WRITE(6,70)

GO TO 50
30 CONTINUE

REWIND 5
READ(5,80, END=40,ERR=30)(LLINES(J),J=1,9)
RETURN

40 REWIND 5 7:7
A WRITE(6,60)

GO TO 20
50 CONTINUE

STOP
60 FORMAT(IX,' WARNINGs NULL STRINGS ARE NOT ALLOWED, ENTER CHARACTER

X VALUES.')
70 FORMAT (///,5X,' PROGRAM TERMINATION - TWO NULL STRINGS ENTERED!')
80 FORMAT(9A4)

END
c
C
C
C
C Z
C
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* C
*~C-
* C SUBROUTINE META -- BY CALLING COMPRS AS A SUBROUTINE HERE,-
*C DONEPI HAS SUFFICIENT TIME TO FINISH; OTHERWISE COMPRS IGNORED

C AND METAFILE NOT SAVED
C

C
SUBROUTINE META

10DO 10 I=1,900000

RETURN

END .

-C
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